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Abstract

Identifying contagion effects during periods of financial crisis is known to

be complicated by the changing volatility of asset returns during periods of

stress. To untangle this we propose a GARCH common features approach,

where systemic risk emerges from a common factor source (or indeed mul-

tiple factor sources) with contagion evident through possible changes in the

factor loadings relating to the common factor(s). Within a portfolio mim-

icking factor framework this can be identified using moment conditions. We

use this framework to identify contagion in three illustrations involving both

single and multiple factor specifications; to the Asian currency markets in

1997-98, to US sectoral equity indices in 2007-2009 and to the CDS market

during the European sovereign debt crisis of 2010-2013. The results reveal

the extent to which contagion effects may be masked by not accounting

for the sources of changed volatility apparent in simple measures such as

correlation.
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1 Introduction

There is widespread agreement that the challenge for identifying contagion is to

disentangle it from interdependence. In particular, contagion is not simply revealed

by increased correlation of performance indicators during a crisis period — rising

correlation coefficients are polluted by the rising volatility conditions which are

almost invariably associated with periods of financial stress. Forbes and Rigobon

(2002) propose a neat way of correcting the correlation coefficient in order to catch

only that part which is not due to rising volatility. However, when contemplating

the potential for contagion from a ‘source’ market to a ‘target’ market, it is clear

that the Forbes and Rigobon correction does not take account of the fact that

the volatility of the target market may change both for reasons associated with

the source, and for reasons of its own. If this idiosyncratic volatility in the target

market is higher (lower) in crisis times than in non-crisis times, we argue that

the Forbes and Rigobon correction overestimates (underestimates) the spurious

component of the correlation increase.

These observations suggest a factor model structure when considering contagion

from multiple sources towards multiple potential targets. It is the simultaneous

volatility increase due to the rising volatility of common factors that pertains to

interdependence, and should not be dubbed contagion. This framework is com-

patible with the view of contagion as correlation in excess of that expected via

fundamentals, as in Bekaert et al (2005), or later, and more directly related, in

Bekaert et al (2014) as "the comovement in excess of that implied by the factor

model". While we concur with this definition, our empirical strategy differs.

The originality of our approach is to let the data speak by basing identification

of the fundamentals and the link to asset correlation on a statistical testing strategy

rather than on an a priori definition of economic fundamentals. Following the

seminal work of King et al (1994) we note first, that the key to identifying changing

conditions for portfolio diversification is to see the time-varying volatility of returns

as "induced by changes in the underlying factors", and second, that assuming time-

varying conditional variance may facilitate identification of the factor model.

On one hand, like King et al (1994), we set the focus on factors whose role is

to capture the time variations of volatility that are predictable — in contrast with
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unpredictable structural breaks in crisis times. We focus on the unpredictable

part of correlation as characterized by idiosyncratic terms, and for these to play

a role in contagion via structural changes during crisis periods. In contrast with

King et al (1994), our factor model allows idiosyncratic risks to be correlated

across assets. For us ‘idiosyncratic’ means uncorrelated with the factors which

drive predictable (GARCH-type for example) components of return volatilities.

One of the two channels of contagion we identify will be through structural breaks

in so-called ‘idiosyncratic betas’ (betas of target on source induced only by their

idiosyncratic components). Idiosyncratic risks are by definition time invariant, up

to structural changes in the crisis period, and we will identify factors as capturing

all time-varying components of return volatilities. Although we never resort to

any specific GARCH or stochastic volatility dynamics, our multivariate volatility

model with latent factors can be seen as inspired either by GARCH-factor models

or common factor stochastic volatility models studied in a maximum likelihood

framework by Diebold and Nerlove (1989) and Engle et al (1990) for GARCH

factors as well as Fiorentini et al (2004) for stochastic volatility factors. Note that

all of these models are more restrictive than ours as they are both fully parametric

(in a likelihood setting) and preclude correlation between idiosyncratic risks. Our

model is semi-parametric in nature and implemented with a GMM approach.

On the other hand, like Bekaert et al (2014), we want to characterize con-

tagion as comovements which are not explained by the factor model. Although

our statistical strategies are different from Bekaert et al (2014), our definitions

of contagion are essentially identical. With weekly data, Bekaert et al (2014)

run regressions of returns on lagged values and contemporaneous factors (three

value-weighted market indices) with time-varying beta coefficients. Contagion is

identified by a non-zero coefficient for a crisis dummy either in time-varying betas

or in the intercept. In our framework betas are constant by definition (since time-

varying volatilities are fully captured by factors), except for structural breaks at

times of crisis. Since we work with daily data, we focus on conditional variances

and consider structural changes in idiosyncratic betas rather than intercept shifts.

However, our two preferred characterizations of contagion as structural changes in

either conditional factor loadings or in idiosyncratic betas match the spirit of the

two dummy coefficients on conditional factor loadings and intercepts in Bekaert et
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al (2014).

Our semi-parametric framework for contagion identification fits within the

"GARCH common features" framework as put forward by Engle and Kozicki

(1993) and revisited for statistical inference by Doz and Renault (2006) and Dovonon

and Renault (2013). The key idea is that heteroskedasticity goes through only a

few latent common factors while many linear combinations of primitive returns

(called common features and interpreted as returns on portfolios) are actually ho-

moskedastic, a feature implicitly incorporated in the contagion model of Dungey

and Martin (2007). The common factors are the source of potential contagion (the

systematic risk), where contagion is defined as the change in the factor loading of

each of the  primitive asset returns (the  potential targets) on the systematic

risk. 1

Our framework cannot avoid the reflection problem of Manski (1993): we need

some prior information to specify the reference assets. In other words, we must

pick a few assets that are not in our target set and consider them as the "mimicking

portfolio"; that is the portfolios whose returns convey the information about the

underlying systematic risk. Contagion will then be characterized by changes in

factor loadings of the  assets on the latent common factors. As it is common

in the existing literature to exogenously choose the ‘source’ assets for contagion

based on observed events this does not present a disadvantage.

To protect ourselves from the spurious identification of contagion, highlighted

in Billio and Pelizzon (2003), we ensure that the increase in volatility is due at

least as much to the idiosyncratic component as to the potential source of conta-

gion through systematic risk. We recognize that the share of the observed portfolio

variance that is borne by the common factors is somewhat arbitrary (above some

lower bound in order to capture the genuine time-varying part), although robust-

ness tests suggest there is little sensitivity to this choice.

Whilst contagion is of considerable importance to policy makers and investors

alike, there is significant disagreement in the existing literature on how to detect its

presence, as the following examples illustrate. Identification via heteroskedasticity

1We are very close in spirit, albeit in a completely different framework, to some work developed

simultaneously and independently by Darolles et al (2015) who attempt to disentangle frailty

(the latent factor explaining correlation in default occurrences) from contagion; see also Duffie

et al (2009).
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forms the basis of tests in Bekaert et al (2014), Dungey et al (2010), Dungey and

Martin (2007), and Corsetti et al (2005), with alternative means of controlling for

evolution in conditional correlation in Caporale et al (2005) and Kasch and Caporin

(2013) who incorporate DCC models, and in Markov switching frameworks such

as Ajay et al (2013). Relationships between tail events are differentiated from

those in ‘normal’ times in papers using co-exceedance measures such as Bae et

al (2003), Boyson et al (2010), quantiles in Baur and Schulze (2005), Caporin et

al (2014) and copulas in Busetti and Harvey (2011) and Rodriguez (2007). The

impact of extreme events such as outliers or jumps represents contagion effects

in Favero and Giavazzi (2002) and Aït-Sahalia et al (2014), while papers such

as Longstaff (2010) rely on changes in transmission mechanisms across periods

without specifically accounting for changes in underlying volatility. However, the

common feature of all of these models is a concern with the change in the loading

on the transmission of the source to the target asset during a crisis period.

We estimate contagion effects as a change in the loading on the source fac-

tors for three examples covering different asset markets in different geographical

regions and different crisis periods — currencies during the 1997-1998 Asian cri-

sis, sectors of the US equity market in 2007-2009 and European sovereign CDS

spreads for 2008-2013. These allow us to demonstrate both single and multiple

factor specifications and the reflection problem. Contagion effects are sometimes

the result of increased loadings on the source factors, but equivalently sometimes

reveal decreased loadings as assets disconnect from the crisis source. These effects

are not necessarily revealed in analyses that concentrate on changes in correlation

or (unconditional) regression coefficients, as the increased residual volatility for

the asset may be sufficient to mask the change in the underlying factor loadings.

The paper proceeds as follows. Section 2 sets up the problem of identifying

contagion as separate from interdependence through carefully differentiating ex-

plained and unexplained volatility and predicted and unpredicted volatility for

the target asset in order to develop our modelling framework. Section 3 explains

the econometric method and testing strategies adopted in Section 4, where three

empirical examples are given. Section 5 concludes.
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2 Interdependence versus contagion

In this section we analyze the different reasons why comparing the correlation

between the returns of two assets during a crisis period and the corresponding

correlation during a non-crisis period is not an accurate way to identify contagion.

2.1 Source versus target

We are mainly interested in the impact of a given source of contagion, namely

some reference asset return 0, on a family of possible targets, namely asset returns

  = 1   It is then natural to think about the relationship between source

and target in a linear regression framework:

 =  + 0 +  [] = 0 [0 ] = 0

The contagion effect will then be identified as a structural break in the joint

distribution of asset returns. Since financial crises correspond in general to a

pervasive increase of volatility among all asset returns, we will actually consider

two sets of regression equations, one for the crisis period (defined by an index 

for High volatility) and one for the non-crisis period (designated by an index  for

Low volatility):2

 =  + 0 +    [ ] = 0  [0   ] = 0 (1)

 =  + 0 +  [] = 0 [0 ] = 0 (2)

With obvious notations:

 = 


0
  = 



0
(3)

As it is now well known, formula (3) clearly shows why comparing correlations

 and  to identify contagion is biased towards finding contagion if the rate of

increase of volatility (00) for the source country exceeds the rate of increase

() for the target country. More precisely, when  =  , we have:

2In this way we deviate importantly from Bekaert et al (2014), Forbes and Rigobon (2002) and

the regression model approach of Dungey et al (2005) who each impose a single homoskedastic

error structure across both the non-crisis and crisis periods.
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   ⇔





0

0

This remark led Forbes and Rigobon (2002) to propose a corrected correlation

measure for the purpose of contagion identification, based on the rates of increase

of volatility in both markets. We will now show that such a correction is not

sufficient in general.

2.2 Unexplained versus explained volatility

By standard decomposition of variance formulas, we define unexplained volatility

in both crisis and non-crisis periods as follows:

 =  () = (1− 2)
2


 =  () = (1− 2)
2


We can then prove the following identity:

Proposition 2.1.:

 =  ⇒  = 

"
1 + 

1 + 2 +
−

2


#12
where:

1 +  =
20
20

Proof:

 =  ⇔ 


0
= 



0

⇔  = [1 + ]12




But with  =  =  :

2
2

= 2
2

220
= 2

220 + 

220
= 2

∙
1 +  +



220

¸
Therefore we will get the announced result if we show that:

2 + 2


220
= 1 +

 − 

2
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that is:

2
2
 +  = 2 +  − 

which is true since  = (1− 2)
2


QED

Forbes and Rigobon (2002) set the focus on the increasing function (for positive

):

() = 

∙
1 + 

1 + 2

¸12
They propose to correct  as follows:

̃ = −1 () (4)

before assessing contagion through correlation increase. They argue that the rel-

evant test for contagion is indeed the test of the inequality ̃  . Their

rationale is as follows: If the contagion were spurious (in the sense that indeed

 = ), we would have  = () and thus ̃ = . Thus, computing the

corrected correlation is an edge against the upper-bias of  that may spuriously

lead to the conclusion that there was a contagion effect, while it was only an arte-

fact of soaring volatility (  0). Our general proposition above shows that their

argument is fully correct only in the particular case  = , while by contrast

(still assuming  = ):

   ⇒   ()⇒ ̃  

In this case, as pointed out by Billio and Pelizzon (2003), Forbes and Rigobon

(2002) overestimate the spurious component of correlation increase (and thus over-

correct for it) because "a significant part of the increase in volatility is due to the

idiosyncratic component". However, we must acknowledge that there is no such

thing as a generalization of Forbes and Rigobon (2002) bias correction strategy

for the general case where idiosyncratic risk may change. There is no alternative

to the function () above since the correction term −
2


in Proposition 2.1. is

not a function of  alone.

The bottomline is that only variation of beta coefficients between non-crisis

and crisis periods (corresponding respectively to equations (2) and (1)) provide

some reliable measures of contagion.
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2.3 Predictable versus unpredictable volatility

In a time of crisis, all the parameters of the economy may change. However, when

trying to identify contagion, we are more interested in knowing whether change

is about the structural linkages in the economy. In particular, since it is known

that asset return volatility is stochastically time-varying and highly persistent,

an important aspect of contagion would be a change in regime in these aspects.

With respect to the approach of Forbes and Rigobon (2002) described in previous

sections, we will introduce two additional features.

First, we set the focus on volatility dynamics rather than on some otherwise

constant volatility parameters that suffer from structural breaks in the crisis pe-

riod. Second, the source of contagion is no longer a given asset return but rather

one or more latent factor(s) that are responsible for time variations of volatility.

For identification purposes, the dynamics of these latent factors will be studied

through the observed dynamics of some mimicking portfolios.

For the sake of expositional simplicity, let us depict the factors,  as respon-

sible for volatility dynamics while the so-called source returns, 0 are actually

the return of some mimicking portfolios. In all subsequent equations, we refer to

a given increasing filtration ()  = 1 2  such that the first two conditional

moments of returns observed a time (+1) are computed given the information 

available at time , and then accordingly denoted by ()  () and ().

2.4 Model for the source returns

Consider a potential of    source returns as noisy observations of the latent

volatility factors; to conserve space we portray this in the  = 2 case here, but the

generic  factor case is easily generalizable:∙
01+1
02+1

¸
=

∙
1+1
2+1

¸
+

∙
01+1
02+1

¸
= +1 + 0+1

where 0+1 = [01+1 02+1]
0 contains homoskedastic error terms, and the factors

are conditionally heteroskedastic:

 (0+1) = 0  (0+1) = Ω00
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 (+1) = 0  (+1) =

∙
211 12
12 222

¸
For expositional simplicity we assume that all returns and factors have a zero-

conditional expectation given past information. Assuming zero conditional co-

variance between factors and noise, the variance of the source is decomposed into

time-varying and constant components.

 

µ∙
01+1
02+1

¸¶
= Σ0 =  (+1) + Ω00

Since the conditional covariances of the two source returns may be time-varying, it

may not be possible to normalize the two latent factors to make then conditionally

uncorrelated. By contrast, we can assume without loss of generality that they are

unconditionally uncorrelated, that is:

 [ (+1)] =

∙
2(1) 0

0 2(2)

¸
Note that the unconditional variance of factors is not identified. The time-

varying part of return variance can always be artificially inflated by incorporating

a constant component. In other words, it takes an identification assumption to

decide the share of the variance of the sources carried by the factors:

Identification assumption ()

For some  ∈]0 1[ given:
2()

 (0+1)
= 

Note that for  = 1 2 the parameters  can be interpreted as the (unconditional)

squared correlation coefficient between the volatility factor +1 and its mimicking

portfolio return 0+1 By choice of , we identify factors that are more correlated

with the source when  is large. The smaller the , the smaller the part of time-

invariant volatility carried by the factor, since for the source, the residual variance

is:

Ω00 =

∙
0011 0012
0021 0022

¸
=

∙
(1− 1) (01+1) 0012

0021 (1− 2) (02+1)

¸
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The choice of  is constrained by the fact that the volatility of the factor must

be sufficiently high to allow the factor to capture at least the time-varying part of

the variance of the source. That is the residual variance for each source asset is

bounded as follows:

00 ≤ min
1≤≤

[  (0+1)]

Then, the variance of the factor would be kept at its minimum possible value if

one chooses  = ̄ defined as follows:

̄ = 1− min1≤≤ [  (0+1)]
 (0+1)



The value of ̄ increases as the share of conditional returns on unconditional

returns decreases. Our choice will be to take the same value of  for () for

all source assets  Since we want to take the minimum possible value, we take

 =  = max(). Empirically, the assumption of  = ̄ is innocuous in our

examples, as long as the minimum condition is respected the results are relatively

insensitive to the choice of value for 

2.5 Model for the target return

The key idea is for the volatility factor to capture the time-varying volatility. The

model entails two restrictions: First, target returns +1 have a time invariant

conditional regression coefficient  on the volatility factor. Second, the vectors

of residuals of this regression are homoskedastic. For brevity consider the case

of ( − ) where  = 2 target returns, admitting that two of the initial  target

returns are now seen as sources.

Formally, for  = 1  − 2 :  = 1 2

+1 = 11+1 + 22+1 + +1 (5)

 (+1) = 0 [+1 +1] = 

[1+1 +1] = [2+1 +1] = 0

and for  = 1  − 2 :  = 1 2

[+1 0+1] = 0
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Then the two factor model (5), jointly with the specification of the shares 

for factor volatility, provides a decomposition of unconditional beta coefficients of

asset  = 1  − 1 defined as:

 =
[+1 0+1]

 (0+1)
  = 1 2

Since by definition:

[+1 01+1] = 1
2
11 + 2

2
12 + 01

[+1 02+1] = 1
2
12 + 2

2
22 + 02

by taking unconditional expectations:

[+1 01+1] = 1
2(1) + 01

[+1 02+1] = 2
2(2) + 02

and dividing on both sides respectively by  (01+1) =
2(1)

1
=

0011
1−1 and by

 (02+1) =
2(2)

2
=

0022
1−2 we get:

1 = 11 + (1− 1)1

2 = 22 + (1− 2)2 (6)

where  = 000  = 1 2 is the regression coefficient (both a conditional

and an unconditional one) of  on 0 As rigorously explained in the next section,

under the maintained assumption (5), the four beta coefficients  and   = 1 2

are identified from the observation of the time series ()1≤≤   = 0 1  of

asset returns. By contrast, identification of   = 1 2 takes into account the

choice of the values  of the share of the variance of the factors in the total

variance of the source returns.

Our identification strategy will then be germane to the "identification from

change in variance" approach promoted by Rigobon (2003). We will exogenously

pick a value of  and keep it invariant from the non-crisis period to crisis period.

Note that this is a natural normalization condition in these applications — the mim-

icking portfolio keeps the same correlation with the latent volatility factor. This

allows us to find values of ,  and  in both low volatility and high volatil-

ity regimes. We are able to measure the structural change of the unconditional
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regression coefficient,  (of the target on the source), but also to disentangle

the two components of this change as the structural change in the impact of the

volatility factor on the different markets via , and the structural changes in the

time invariant residual correlations between markets,  As the volatility factor

is highly predictable then the first type of contagion, changes in  are of greater

interest as far as economic policy is concerned. In other words, we see that the

(structural changes in) unconditional  coefficients are imprecise signals of con-

tagion since the phenomena of interest (structural changes in ) may be blurred

by idiosyncratic issues.

3 Econometric Inference

For sake of notational simplicity, it is convenient to always consider that we have

a set of (+ 1) demeaned asset returns

+1  = 0  

In the case of a one-factor model, the first return 0+1 will play the role of the

source return while we have  target returns +1  = 1  

In the case of a two-factor model, the first return 0+1 as well as the last

return +1 will play the role of the two source returns while we have ( − 1)
target returns +1  = 1  −1 In other words, we live in this case with a dual
notation for the two source returns:

0+1 = 01+1

+1 = 02+1

Generally speaking, {+1  ∈ } stands for the set of target returns with:  =
{1 2  } for a one-factor model, and  = {1 2  − 1} for a two-factor model.

3.1 Estimation of factor loadings

Following Doz and Renault (2006), standard and efficient GMM inference can be

performed thanks to the complete set of conditional moment restrictions implied

12



by our factor model:



"
+1

Ã
+1 −

X
=1

0+1

!#
= ∀ = 0 1  ∀ ∈ 

Recall that  = {1 2  } when  = 1 and  = {1 2  − 1} when  = 2.

For a given vector  of instruments, we end up with the following set of un-

conditional moment restrictions for each asset  ∈  :



"
+1

Ã
+1 −

X
=1

0+1

!#
= ()∀ = 0 1   (7)

In all our applications, our vector  of instruments is the most usual to capture

conditional heteroskedasticity, namely the ( + 2)-dimensional vector containing

the constant and the squared current returns 2  = 0 1   . In other words,

for each asset  ∈ , (7) entails (+1)(+2) unconditional moment restrictions.

For each target asset  ∈ , the above moment restrictions can be written as

a multivariate linear regression model as follows:

(+1 ⊗ ) +1 =

X
=1

 (+1 ⊗ ) 0+1 + [+1 ⊗ ] • + +1 (8)

where +1 = (+1)0≤≤  +1 is a ( + 1)( + 2)-dimensional martingale dif-

ference sequence, • = ()0≤≤ and +1 stands for the identity matrix of

dimension (+ 1).

Therefore, for each asset  ∈ , efficient GMM on moment restrictions (7)

is akin to solving some linear equations about sample averages over observations

 = 1 2   of equations (8). Of course, there is a non-zero correlation between

equations for different assets, and thus some efficiency gains would be possible by

performing joint GMM on the set of all assets together. Zellner’s theorem does

not apply since for each equation, OLS is not efficient. However, we will overlook

the possible efficiency gain of grouping and we will estimate regression equations

asset by asset.

It is worth noting that, in spite of this simplification, our approach remains

fully multivariate since for each target asset, all asset returns are considered as

potential instruments for capturing its conditional heteroskedascity. In particular,

13



we want to emphasize that, as far as heteroskedasticity dynamics for each asset

return is concerned, even our one-factor model is arguably less restrictive than a

set of univariate GARCH models for each asset. More precisely, while a univariate

GARCH(1,1) model would impose that:

(
2
+1) =  + −1(

2
)

(where the volatility persistence  stands for the sum of the two GARCH para-

meters), we write instead:

(
2
+1) =  + (+10+1)

Then, for instance a linear forecasting model of the source return by the target

return:

[0+1 |+1] = 0 + 0()+1

would leave the door fully open for the specification of conditional heteroskedas-

ticity:

(
2
+1) =



1− 0()

Of course, our model also imposes some restrictions on conditional covariances

such as:

(+1+1) =  + (+10+1)

but this sounds much less restrictive than imposing say, constant conditional corre-

lation between univariate GARCH(1,1), which can be represented by the particular

case:

0() = 

∙
(

2
0+1)

(
2
+1)

¸12
The bottom line is that the factor model, designed for the purpose of capturing

contagion, is much less restrictive than it may first appear. It sets the focus

on the expected commonalities between the risk components of different assets,

but leaves the door open for any forecasting model of individual return volatility.

Unsurprisingly at least when allowing for structural changes in the parameters,

one-factor models (or possibly two-factor models) are not rejected by the data in

our empirical examples in most circumstances.
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3.2 Decomposition of variance

We identify the decomposition of variance between factor(s) and residual term by

the choice of some  ∈ [max1≤≤ ̄ 1] such that for each factor  and source

return 0+1

 (+1) =  (0+1)

 (+1 0+1) =  (0+1) + 0∀ ∈ 

Consider for each target asset  ∈  an augmented set of moment restrictions

as follows:



"
+1

Ã
+1 −

X
=1

0+1

!#
= ()∀ = 0 1   (9)

 [0+1 (+1 − 0+1)] = 0 1 ≤  ≤ 

While (9) entails two more moment restrictions than (7), it does not modify the

asymptotic variance of an efficient estimator of factor loadings  1 ≤  ≤ 

(or the residual parameters  ) because the additional moment restrictions just

identify the additional parameters 0 1 ≤  ≤  However, the GMM estimates

of the latter parameters will be more efficient than their naive sample counterparts

obtained by plugging in the GMM estimates of  deduced from (7) because (7)

overidentifies the unknown parameters and thus provides "implied probabilities"

to improve the estimates of additional moments ; see e.g. Back and Brown (1993).

Using the two factor model as an example, the augmented set of moment

conditions (9) can be rewritten as follows:⎡⎣ (+1 ⊗ ) +1
01+1+1
021+1+1

⎤⎦

=

⎡⎣ (+1 ⊗ ) 01+1 (+1 ⊗ ) 02+1 [+1 ⊗ ] 0 0

201+1 0 0 1 0

0 202+1 0 0 1

⎤⎦
⎡⎢⎢⎢⎢⎣

1
2
•
01

02

⎤⎥⎥⎥⎥⎦
+

⎡⎣ +1
1+1
2+1

⎤⎦ (10)
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Note that while +1 is a martingale difference sequence, +1 will generally

require correction for serial correlation. For sake of simplicity, we use a HAC esti-

mator for the whole set of moment conditions, overlooking the fact that we know

that a subvector is a martingale difference sequence. This is of course immaterial

asymptotically and our actual sample sizes are large. If Σ̂
()

 stands for a HAC

estimator computed from OLS residuals in (10), our efficient GMM estimator of

() = [1 2 0 1   01 02]
0 will be:

̂
()

 =
h
̄ 0

 (Σ̂
()

 )
−1̄

i−1
̄ 0

 (Σ̂
()

 )
−1̄ ()



with:

̄
()

 =
1



X
=1

⎡⎣ (+1 ⊗ ) +1
01+1+1
02+1+1

⎤⎦ (11)

̄ =
1



X
=1

⎡⎣ (+1 ⊗ ) 01+1 (+1 ⊗ ) 02+1 [+1 ⊗ ] 0 0

201+1 0 0 1 0

0 202+1 0 0 1

⎤⎦(12)
We maintain the same identification assumption () for the two periods (see

empirical section for discussion of the way to pick a specific value of ). This as-

sumption identifies in particular the residual covariance parameters 01 02  =

1  − 1 Then, using moment conditions (9), we can estimate jointly by GMM
for each period the asset  parameters  = ( • 0)  = 1   − 1 denoted
respectively as:


()

 = ( •0)  = 1  − 1

()

 = (  •0)  = 1  − 1

3.3 Identifying contagion

As already mentioned, contagion will be identified by comparing the model pa-

rameter values between a crisis period and a non-crisis period. We will always

assume that the possible break point date is known, such that we have a non-crisis

period for observations at dates  = 1   and a crisis period for observations at

dates  = ( + 1)   ( + ) We assume that each sample size goes to infinity

such that valid asymptotic theory can be used for inference within each sample.
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3.3.1 Estimating the parameters

We have three kinds of parameters to estimate:

(i) Model free parameters:

We estimate within each sample the correlation (including the Rigobon’s cor-

rected correlation (4)) and regression coefficients between each asset return and

the source by the sample counterparts. We end up with consistent asymptotically

normal estimators for each target asset  ∈  an each source asset  (1 ≤  ≤ )

of:

(   ̃)

( )

(ii) Model-based parameters:

We maintain the assumption that the one or two factor model, or at least its

characterization through the moment conditions (9), is well-specified, for each of

the two periods. Using by GMM we can then estimate, for each period and each

target asset  ∈  its parameters ( ) 1 ≤  ≤  denoted respectively as:

( )

(  )

Note that we use the asymptotic theory of GMM for inference about these parame-

ters in the context where the length  of the time series is seen as going to infinity,

while the number, , of assets is considered as given. Typically, this implies in

practice, that we have to work with  small with respect to  In our examples 

is always smaller than 10, while  is always several hundred.

(iii) Decomposition of variance parameters:

We maintain the same identification assumption () for the two periods,

and this assumption identifies in particular the residual covariance parameters

0  = 1   Then, using moment conditions (9), we can estimate jointly by

GMM for each period the target asset  parameters  = (  0) 1 ≤  ≤ 

denoted respectively as:


()

 = ( 0)  ∈  1 ≤  ≤ 


()

 = (  0)  ∈  1 ≤  ≤ 
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It is worth recalling that the parameters ( •)   = 1    6=  are ac-

tually estimated with the same asymptotic efficiency whether they are identified

by just the moment conditions (7) or by the augmented set of moment conditions

(9) that incorporates the decomposition of variance. For the sake of convenience,

we set the focus on (9) for statistical inference. Once all parameters are estimated

for the two periods, it is easy to run some Wald tests to test for structural change

between non-crisis and crisis periods. However, as far as model-based parame-

ters are concerned, GMM inference paves the way for several structural stability

tests reviewed in the next section (see Hall (2005) section 5.4 for a comprehensive

survey).

3.3.2 Testing hypotheses about structural stability

Since our focus of interest is the characterization of the differences between crisis

and non-crisis periods, we never try to estimate or to test for the specification of

a model pretending that there is no such thing as a structural change between the

two periods. Therefore, we first estimate separately a one or two factor model in

each period and run the corresponding overidentification test. More precisely, we

compute for each target asset  ∈  the Hansen’s J-specification test statistics:

 = 

³
̄
()


− ̄̂

()



´0
(Σ̂

()


)−1
³
̄
()


− ̄̂

()



´
(13)

for the factor model of the non-crisis period as well as the Hansen’s J test statistics:

 = 

³
̄
()

  − ̄  ̂
()

 

´0
(Σ̂

()

 )
−1
³
̄
()

  − ̄  ̂
()

 

´
(14)

for the factor model of the crisis period. Since the moment conditions for decom-

position of variance just identify the residual variance parameters 0, we have

actually to assess overidentification through the (+ 1)(+ 2) unconditional mo-

ment restrictions (7) that are used to identify the factor loadings  1 ≤  ≤ 

as well as the (+ 1) parameters   = 0 1   Therefore, when estimating a

one factor model, under the null hypothesis that this model is well-specified:

  −→ 
2 [(+ 2)]
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while, with a two-factor model:

  −→ 
2 [(+ 2)− 1]

Even if a one factor (or a two factor) model is valid in each single period, the

value of the factor loadings may change. For this reason we apply the Ghysels

and Hall’s predictive test, which looks like an overidentification test in the crisis

period but uses the GMM estimator of the non-crisis period. More precisely the

test statistic for a given target asset  ∈  is:

() = 

³
̄
()

  − ̄  ̂
()



´0
(Ω̂()())−1

³
̄
()

  − ̄  ̂
()



´
where:

Ω̂()() = Σ̂
()

  +



̄ 

³
̄(Σ̂

()


)−1̄ 0



´−1
̄ 0

 

This test statistic examines the validity of the orthogonality conditions in the

second period, given that the conditions hold in the first period at some specific

value 
()

 of the parameters. Let us denote by 0() this null hypothesis

under the maintained hypothesis that a -factor model is valid in the non-crisis

period. Then, Theorem 2 of Ghysels and Hall (1990) tells us that under the null

hypothesis 0() :

() −→ 
2 [(+ 1)(+ 2) +]

Note that the number of degrees of freedom is larger than for the overidentification

J-test because we do not subtract the number of estimated parameters; rather we

adjust the weighting matrix to account for the variance of ̄  ̂
()


. We also

account for the fact that our unconditional moment restrictions entail not only

the (+ 1)( + 2) equations to identify factor loadings but also the  equations

to identify 0 1 ≤  ≤  Note that Ghysels and Hall (1990) prove this result

by assuming that  goes to infinity and  =  for some   0 The result

is clearly valid more generally when both  and  go to infinity and the ratio

() has a finite limit.

The power of the Ghysels and Hall’s predictive test is fully based on the ability

of the entire parameter vector in the non-crisis period


()

 = ( 0) 1 ≤  ≤ 
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to reproduce the idiosyncratic volatility of the target asset  and its comovements

with other assets during the crisis period. For the purpose of economic policy

implications, it may be even more important to set the focus on the stability of

the factor loadings.

Hall (2005) states the convenient result that under the null hypothesis of no

change, the two J-test statistics on the one hand and the Wald test statistics

comparing parameter values on the other hand are asymptotically independent.

We will set the focus on the Wald test of no change in the factor loadings. In other

words, for each target asset  ∈  = 1 2 − 1, the Wald test statistic will be:

 = ( + )
³
̂ − ̂

´0 h
̂()

i−1 ³
̂ − ̂

´
where:

̂() =

∙


 + 

¸−1
Ω̂(̂) +

∙


 + 

¸−1
Ω̂(̂)

where Ω̂(̂) (resp. Ω̂(̂)) stands for the estimated asymptotic variance of

the GMM estimator
√
̂ (resp.

√
 ̂). As usual, the test statistic will

be asymptotically 2(1) (resp. 2(2)) under the null hypothesis that the factor

loading of the one factor (resp. two factor) model had not changed between the

non-crisis and the crisis period.

4 Empirical Implementation

A challenge to testing for contagion is the variety of assets, markets and time pe-

riods in which these problems apply. Here we provide three different examples to

illustrate the outcomes for evidence of contagion when the tests are applied to the

change to the underlying factor loadings rather than the correlation coefficients.

The illustrations cover different markets, assets and sample periods. We consider

currency markets during the Asian financial crisis of 1997-1998, US equity industry

sectors for 2007-2009 and the CDS market for European sovereigns over the period

of 2008-2013. These examples demonstrate the behavior of a single factor model,

the role of the reflection problem and the evidence for a two factor model respec-

tively. In each case our selection of precise demarcation between the non-crisis
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and crisis period draws on the commonly accepted dates in the existing literature.3

The descriptive statistics of daily returns in each of the currency and equity

markets, and the daily changes in 5-year CDS spreads, for the non-crisis and

crisis periods of each example are given in Table 1. Data sources are provided in

Appendix 1. Each example shows the typical increase in unconditional variance of

the asset returns (or changes in CDS spreads) and the associated increase in range

of returns in the form of both more extreme maxima and minima during the crisis

period than the non-crisis period.

Having nominated our mimicking factors, the values of  are calibrated from

univariate GARCH(1,1) estimates of the minimum conditional variance for the

source asset over the non-crisis period.4 Correction for serial correlation is not

necessary for the majority of the model as it relies on conditional moments. How-

ever, it may influence the unconditional moments. The results in this paper focus

on 5 day moving averages, representing a one-week horizon, but are insensitive to

other choices for the parameter estimates.5

In deciding how many factors will be included in our model we include both

economic and statistical evidence. Statistically, we want the model specification

to reduce the evidence of GARCH in the crisis period once the common factor

effect has been removed. Thus we test for improvements using the ARCH-LM test

on the residuals of the model in the crisis period over the raw data. However,

this test only provides an indication, at least in part because it has no mechanism

for balancing the multiple results from multiple target assets. Thus we follow the

extant literature on testing for contagion and nominate a potential source asset

using the history of the crisis events. Having chosen the mimicking factors we then

subject the framework to the specification tests for structural stability.

The estimated results for the first two applications provide evidence that the

single factor framework passes the overidentification tests in both the non-crisis

and crisis periods of the sample, but in the third example a two factor framework is

3Exogenous dating choices for crisis periods are common in the literature, and usually relate

to observed events. For a few recent attempts to endogenously choose both crisis dates and

explore contagion effects see Dungey et al (2015) and Contessi et al (2014).
4However, the empirical results are not sensitive to alternative choices which conform to the

restrictions discussed in Section 2.4.
5Results for alternative smoothing parameters are available from the authors or by altering

the smoothing parameter in the accompanying code appropriately.
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empirically and economically preferable. The Ghysels-Hall predictive tests suggest

that in the vast majority of cases the estimated parameters from the non-crisis

period do not provide a good representation of the second period loadings, implying

that something has changed over the sample. Tests of structural changes reject

the hypothesis that the underlying parameters remain the same.

The necessity of using our model based approach to examine changes in  as

opposed to  is evident across all the examples. In each application the estimated

values of 0 in the non-crisis period are statistically significant for every asset,

and their absolute values increase in the crisis periods (although sometimes with

a change in sign). Typically the changes in  are not identified by changes in 

due to the role of 0 pointing to the importance of the decomposition (6) in

correctly detecting contagion effects.6

4.1 Contagion between Currencies: 1997-1998 East Asian

crisis

The first example concerns the behavior of currency markets during the East Asian

crisis of 1997-1998. This crisis is commonly dated from the float of the Thai baht

on July 2, 1997 and we nominate a non-crisis period from January 2,1995 to July 1,

1997 ( = 650) and crisis period from July 2, 1997 to August 31,1998 ( = 305).

The data are drawn from Dungey and Martin (2007) and consist of daily US dollar

exchange rate returns for the Thai baht, Indonesian rupiah, Malaysian ringgit and

Australian dollar.

Our economic prior is that the Thai baht provides an appropriate source factor

for this example. Table 2 reports the ARCH-LM test results for the model using

each of the alternative assets as the potential source factor and supports the choice

of the Thai baht as the most effective mimicking factor in eliminating the ARCH

effects present in the data; reducing it to insignificance in Australia and Malaysia

and reducing the evidence for Indonesia. It is worth emphasizing that our approach

picks as a leading factor the currency of a small country instead of the natural

6In each example we also fitted the estimated factor loadings for the crisis period to the non-

crisis data and conducted ARCH-LM tests on the resulting residuals. In each case the results

were uniformly inferior in capturing the non-crisis period conditional volatility structure than the

estimated non-crisis factor model. These figures are not reported in the paper but are included

in the output of the accompanying code or available from the authors on request.
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choice of the Australian dollar. The empirical results below confirm that this

provides a powerful tool to identify contagion.

The changes in correlation coefficients between each currency return and the

Thai baht reported in the top panel of Table 3 show the typical Forbes and Rigobon

(2002) result where unadjusted correlation coefficients increase statistically signif-

icantly between the non-crisis and crisis period, but this difference is insignificant

after the heteroskedasticity adjustment, supporting the conclusion of no conta-

gion. All unconditional beta coefficients  reported in the second panel of Table

2 significantly increase, giving an indication that there was indeed a contagion

phenomenon that has been hidden by over-correction of the correlation coefficient,

reflecting that a significant part of the increase in the volatility component is due

to the idiosyncratic component (see Proposition 2.1).

Our modelling framework provides clear evidence of contagion from the Thai

baht to the Indonesian rupiah, Malaysian ringgit and Australian dollar exchange

rates in the form of a statistically significant increase in the factor loadings 

between the non-crisis and crisis periods; see the last panel of Table 3, estimated

with  = 03. This evidence is completely consistent with the vast majority of the

empirical studies on this crisis; see the summary in Dungey et al (2006). While

the loadings on the Thai baht exchange rate as the mimicking factor change from

significantly negative during the non-crisis period,  to significantly positive

in the crisis period,   for Indonesia and Malaysia, they do not change sign in

the Australian case. Instead, the Australian loading becomes absolutely smaller

during the crisis period, but remains negative. This is a good illustration of the

information content of the factor loadings  for identifying contagion.

During the crisis period, Indonesia and Malaysia were both affected as near-

neighbors with potentially similar economic structural problems to Thailand, sub-

jecting them to contagion channels through both regional proximity and the wake-

up call of contagion, see Goldstein (1998). This is reflected in the change in the

loadings; in the crisis period the loading  for Indonesia is not only positive, but

almost 30 times greater than the pre-crisis loading in absolute value. For Malaysia,

it is correspondingly almost 10 times larger.

This striking evidence of contagion from Thailand to Indonesia and Malaysia is

somewhat less compelling when looking at unconditional beta coefficients. While
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they do increase between non-crisis and crisis periods, it is by a smaller extent and

is always positive. This is due to strongly positive regression coefficients between

idiosyncratic components, even in the non-crisis periods, that are able to mask the

actual behavior of factor loadings . In other words, while these Asian currencies

are all unconditionally positively correlated, the strength of their link with the

common volatility factor has been magnified by the crisis.

4.2 Contagion between Industries in the US: 2007-2009

crisis

The second example is designed to highlight the reflection problem of Manski

(1993) and considers contagion from the financial sector in the US to other sectors

of the economy using daily returns in the S&P500 sector indices for the banking,

insurance, industrials, health, utilities, food and information technology sectors

from August 1, 2004 to June 30, 2009. We contrast results where the US banking

sector or the insurance sector play the role of the source asset; contributing to the

debate on the role of insurance in crises. The demarcation between non-crisis and

crisis period is the date on which the European Central Bank first became active

in extending its support to markets following the revelations of stress, splitting

the sample at August 9, 2007, so that  = 788 and  = 498; see Bekaert et al

(2014) and Contessi et al (2014). A detailed description of the events of the crisis

may be found in sequential issues of the IMF Global Financial Stability Reports

for 2008 and 2009. Although the consensus in the literature is that the source

shock originated in banking, there is some dissent about the potential importance

of insurance; see Chen et al (2014), Acharya and Richardson (2014), Dungey et al

(2014) and Harrington (2009).

Contagion between industry sectors has not been extensively examined using

the frameworks applied to either country-wide indices or other markets, although

there is an earlier literature regarding the transmission of shocks related to bank-

ruptcy announcements as in Lang and Stulz (1992). While the bankruptcy of

other firms tends to spread negative effects to others via bank lending and eco-

nomic linkages, more concentrated industries seem to have offsetting competitive

advantages from the misfortunes of their rivals; Jorion and Zhang (2009), Hertzel
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and Officer (2012).

The ARCH-LM tests reported in Table 4 show that during the crisis period

evidence of ARCH is reduced when the banking sector is the mimicking portfolio,

but the evidence is not uniform across all sectors. Other possible mimicking factors

shown in the Table also reduce ARCH in some assets and show increased ARCH

in others. When insurance is the mimicking factor each of food, utilities and IT

sectors all suffer an increase in evidence of ARCH; consequently the evidence is

somewhat supportive of the use of the banking sector in favour of the insurance

sector as the mimicking factor. For completeness we also present the parameter

estimates for the case where food is the mimicking factor, as although there is

little economic argument for the food sector as the source shock, it does result in

the greatest reduction in ARCH in Table 4.

Table 5a reports the results for the case of banking as the mimicking portfolio.

The first panel presents the typical Forbes and Rigobon (2002) result showing that

although the unadjusted correlation coefficient rises in each sector, their adjusted

correlation coefficients fall. The regression analysis parameters,  and  ,

reported in the second panel of Table 5a are consistent with the separation of the

financial sector from the real economy in the crisis period. Only in the insurance

sector is    Our model results report significant contagion from the

banking sector as the source market to all other sectors of the economy, with

 = 07; see Table 5b. For each asset the non-crisis period loading on the banking

factor, , is positive and significant, consistent with the role that the banking

sector plays in facilitating real economic activity by credit creation.

During the crisis period the loadings,  , change dramatically and become

negative, although insignificant in each sector. The most dramatic changes in

the loading point estimates occur for those industries most closely aligned with

banking, and those where other instances of rescue packages were implemented;

insurance and industrials.7 However, in the crisis period the banking sector is no

longer an individually significant factor in determining the volatility of the other

assets. This dramatic change reflects contagion in the form of removed linkages

between the banking sector and the other sectors; see also Gai and Kapadia (2010),

7Exemplars of rescued or assisted firms include the insurance giant AIG and TARP support

to conglomerates such as GE, and ‘cash for clunkers’ style programs.
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Bekaert et al (2014) and Dungey et al (2014). This form of contagion explains the

poor performance of the ARCH-LM test to elicit the right factor. Typically, with

the food sector as source, we do not have this effect of removed linkages, and thus

the food sector gives the spurious feeling that it better explains the common source

of volatility. The 0 parameters increase substantially between the two periods, in

four sectors moving from significantly negative to insignificantly positive (and while

the standard deviation of banking returns increases almost four-fold — see Table 1

— the 0 increase by a multiple of between 12 and 500 times their non-crisis values

such that    in each case). The contribution of the unexplained variation

leads to incorrect conclusions by comparing either  with  or correlation

coefficients when true interest is located in changes in the loading  to 

To explore the reflection problem we explore the possibility that the insurance

sector may provide a better mimicking factor. We re-estimate the model using

insurance as the mimicking factor asset using  = 08. The model results are

reported in Table 6 where the factor loadings in the non-crisis period,  are

positive significant and relatively small compared with the estimates during the

crisis period,  which are larger and less statistically significant or insignificant.

Furthermore, although the estimates of 0 are statistically significant and posi-

tive, those of 0 are positive but insignificant and have at least doubled (except

in the case of IT where there has been change in sign to negative). In consequence

the increase in the volatility of the source shock for insurance results in   

for a number of sectors. We also implemented a 2 factor representation for this

sector with both banking and insurance as mimicking portfolios. The deterioration

in the performance of the model was marked with increased evidence of ARCH

after applying the factor model to the data. In contrast to common wisdom a one

factor model may display a better fit than a two factor model. (We do not report

the results but they are available from the authors on request.)

Further, following the lead from the ARCH-LM test results in Table 4 which

suggests that food may provide a useful mimicking factor, the second panel of

Table 6 reports the corresponding parameter estimates. In this case the  are

positive for all but the banking sector - indicating that the food industry and

banking industry do not respond in a similar manner - and in the crisis period the

 increases dramatically for all sectors, but the effect is insignificant for both the
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banking and food sectors. The significant t-test between the non-crisis and crisis

period reflects the move from a significant to insignificant relationship with the

food sector by the financial sector. The estimates of 0 all increase in absolute

value over those of 0, but with varied changes in sign, indicating the highly

varied idiosyncratic responses to the crisis conditions when food is the mimicking

factor. In short, the results in Table 6 showing insurance and food as the potential

mimicking factors point to the importance of the reflection problem and the need

to clearly specify the hypothesis of the problem being addressed, both economically

and statistically. Darolles and Gourieroux (2015) make a related point with respect

to identification.

4.3 Contagion in the CDS market: European sovereigns

2008-2013

The final example examines the daily changes in 5-year CDS spreads for the sov-

ereign debt of Ireland, Italy, Portugal and Spain and Germany during the Greek

debt crisis and subsequent difficulties in European sovereign debt markets. The

5-year spread has been investigated as a benchmark in understanding crisis con-

ditions in Wang and Bhar (2014) and Merton et al (2013).8 As the source factor

for Greece we construct a proxy measure of the risk premium it faces as the dif-

ferential between the Greek and US 10 year bonds — daily CDS data for Greece

are not available on the Markit database for the sample period.9 The European

sovereign debt markets remained relatively calm for the period September 9, 2008

to March 31, 2010 compared with the turmoil in equity and money markets. Our

sample ends November 21, 2013 so that  = 403 and  = 951.

Figure 1 shows the constructed Greek-US spread and the other European CDS

spreads over the sample period, where the vertical line represents the change be-

tween non-crisis and crisis sub-samples. The major increase in Greek spreads from

the first quarter of 2010 onwards is clearly apparent, as are the less substantive

rises for the other GIIPS countries. German CDS spreads rose only marginally in

comparison - from an average of 35 basis points to 53 basis points between the

8CDS spreads at firm level are used to study contagion in Jorion and Zhang (2009).
9Arghyrou and Kontonikas (2012) demonstrate the strong relationship between Greek bond

and CDS spreads using monthly data during this period.
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non-crisis and crisis sample (see Table 1). 10

We hypothesize that this scenario is represented with a two factor specifica-

tion, with Greece and Germany forming the source assets. There are firm economic

grounds to consider that our sample contains elements of reaction to both the un-

folding uncertainty around Greece and the relatively safety of Germany. The polit-

ical leadership of German Chancellor Angela Merkel in the crisis, the anchor that

Germany provides to the Euro system, and its role in providing safe-haven assets,

are motivating economic factors; see Arghyrou and Kontonikas (2012). Figure 1

supports the quite different evolution of the German CDS spreads — the descriptive

statistics provided in Table 1 show that the variance of the changes in German

CDS spreads barely changes between the non-crisis and crisis periods. Table 7

shows that while each of the possible assets used as in a single factor mimicking

portfolio improves the ARCH-LM test outcomes, it does not make it insignificant,

whereas when a two factor model with Germany and Greece as mimicking port-

folios the conditional heteroskedasticity is insignificant. We implement the model

with  = 08, representing the maximum of the potential values for  estimated

using univariate GARCH for the two source factors; the value using Germany of

08 exceeds that for Greece of 06 used in the one factor model.11

Table 8 shows that unlike the previous two examples in this case    .

This recognizes that an increase in the CDS spread (as opposed to an increase in

returns in the value of the domestic currency or the equity return) is associated

with poor news for financial markets. During the non-crisis period the loadings

on both factors are significant and positive for all markets and in the crisis period

the loadings on both factors are significant and negative. The non-crisis period

loadings on the Greek factor,  display stronger loadings for the Portuguese

and Spanish CDS than for the Irish and Italian, but all four of these loadings are

10The other clearly notable feature of the Greek spread data is the abrupt drop in the spread

on March 12, 2012 associated with IMF approval of the Extended Fund Facility of 28 billion

Euros on that date - this incident appears to have been largely idiosyncratic and related to

fears of Greek exit from the Eurozone and is not represented in the behavior of the markets for

sovereign debt of other European countries.
11We also implemented the two factor model with separate  for each of the source factors,

with little change in the results. As long as the boundary condition is respected the results are

insensitive to choice of  Note also the difference here between our identification choice and that

of Broto and Pérez-Quirós (2015) who rely on the emergence of a second factor during the crisis

period to identify contagion.
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positive and statistically significant. The loadings on the German factor in the

non-crisis period, , are also positive and significant, largest for the Irish

and Italian CDS and closer to unity for the Portuguese and Spanish. During the

crisis period these loadings switch signs, and for Ireland, Italy and Spain are up to

50 percent higher than in the non-crisis period, reflecting their stronger connection

to the German factor during this period (consistent with the reduced attention to

Greece). This outcome is even more pronounced for Portugal. The Portuguese

case is also shown to be separable from Greece in Caporin et al (2014). The

decoupling of a previously grouped market in this example is reminiscent of the

behavior of Mexican bonds which ceased following Latin American bond market

factors after being upgraded to investment grade in 2000, and instead joined the

North American group; see Rigobon (2002).

The interpretation of these results is aided by considering the relative changes

in volatility in the returns between the non-crisis and crisis periods. For each

of Ireland, Italy, Portugal and Spain the rise in volatility between the non-crisis

period and crisis period was both less than that experienced in Greek spreads, and

greater than that experienced in German spreads. Interpreting the changes in  in

that light shows that the weights on the Greek factor,  fall in absolute value

because the markets disconnect from Greece. Greece’s problems are seen as highly

idiosyncratic. However, they do not escape completely as evidenced by the fact

that there is a significant change in  triggered by the Greek shock and thus

consistent with contagion. In the case of the loadings on the German factor, ,

the increase in volatility for the other markets distances them somewhat from

Germany, which as a safe-haven does not suffer from the same market reassessment

of potential default risk. Thus, Greece and Germany represent extremes — Greece

becomes a relatively more risky proposition and Germany a safe haven — and

consequently the factor loadings on both assets become negative, representing the

different ways in which they have separated from the remaining CDS markets in

the sample.
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5 Conclusion

This paper has proposed a new method to identify contagion. We detect the

change in the loadings on the underlying source factor driving the financial mea-

sure of interest (be it returns or changes in spreads), obtaining identification by

taking advantage of heteroskedasticity via the conditional volatility which char-

acterizes most financial data at other than very low frequency. In this way we

extend the insights of Bekaert et al (2014) who use conditional means on low fre-

quency data to identify changes in factor loadings in detecting contagion. But we

also take advantage of financial econometric developments in a GARCH common

features framework and associated statistical inference techniques. In this way we

are able to both detect contagion in higher frequency data, more akin to the typ-

ically ‘fast and furious’ nature of financial crises (Kaminsky and Reinhart, 2003),

and to directly test for significant changes in the loadings on the chosen source

asset. Our framework provides further information on whether we have made the

correct choice of source for the mimicking factor to represent potential contagion

effects in the crisis period in the form of ARCH-LM tests; when the model is well-

specified ARCH effects should in general be reduced by the factor model during

the crisis period. However, the reflection problem is inherent in this approach

and encourages the use of both economic and statistical evidence. The model has

an important advantage in dimensionality. Most contagion tests are difficult to

estimate for large selections of assets. This framework can handle a substantial

number of assets, and what is more, multiple sources of contagion simultaneously.

It is worth emphasizing that our approach to identify factors is parsimonious in

nature. A multifactor model is not necessarily preferred because it may introduce

spurious heteroskedasticity when a single factor is sufficient to capture volatility

dynamics in the underlying data. Future extensions are intended to consider the

interactions of multiple asset classes, endogenous crisis dating, asynchronous tim-

ing in low and high volatility regimes in different assets and to address the issue

of whether pre-crisis conditions are ever re-established following crisis events.
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6 Appendix 1: Data Sources

• Asian currencies example: Data are daily exchange rates against the US
dollar for the sample period July 2, 1995 to August 31, 1998. The original

data are sourced from Thomson Financial Datastream with codes as shown

in the Table below. These data were also used in Dungey and Martin (2007).

• US equity sectors example: Data are daily equity indices for sectors of
the US economy from the S&P500 for sample period August 2, 2004 to June

30, 2009. The original data are sourced from Thomson Financial Datastream

with codes as shown in the Table below.

• European CDS example: Data are sourced from Markit for European

sovereign USD issued CDS for the period September 15, 2008 to November

21, 2013. These data are available for purchase direct from the vendor. The

bond yields used in the application are sourced from Thomson Financial

Datastream with codes as given in the Table.

Asian currencies US equities

currency Datastream code sector Datastream code

Australia AUSTRUS banking SP5SIBB

Indonesia USINDON food SP5SFRT

Malaysia MYUSDSP health SP5EHCR

Thailand USTHAIB industry SP5SEIND

insurance SP5GINS

IT SP5EINT

utilities SP5GUTL

European CDS

Sovereign Markit code

Ireland IRELND_Rep Irlnd_4A88DE

Italy ITALY_Rep Italy_4AB951

Germany DBR_Fed Rep Germany_3AB549

Portugal PORTUG_Rep Portugal_7AA999

Spain SPAIN_Kdom Spain_8CA965

10 year bonds Datastream code

Greek yield GRBRYLD

US yield USBRYLD
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Table 1: Descriptive statistics for returns in non-crisis and crisis periods

Example 1: Daily currency returns Example 2: Daily US equity sector returns

AUD IND MYR THB Banking Food Health Industry I.T. Insur Utilities

non-crisis: Jan 2, 1995 - July 1, 1997 Aug 2, 2004 - Aug 8, 2007

mean 0.0045 0.0155 -0.0019 -0.0040 0.0724 0.0315 0.02387 0.0425 0.0362 0.0242 0.0655

max 2.5004 1.3649 0.7049 6.1875 4.9202 5.3536 2.9703 2.3912 3.1952 5.1788 3.6599

min -1.6616 -0.7800 -1.1559 -4.5425 -5.6792 -5.3675 -2.7464 -2.9858 -4.0188 -7.1311 -3.9865

s.d. 0.4449 0.1562 0.1810 0.4914 1.2376 1.1089 0.6983 0.7402 0.9150 0.8678 0.8644

crisis: July 2, 1997 - Aug 31, 1998 Aug 9, 2007 - June 30, 2009

mean 0.0903 0.5024 0.1670 0.1772 -0.1784 -0.0932 -0.0564 -0.1300 -0.0653 -0.2180 -0.0743

max 3.045 31.5853 7.1165 17.0666 23.7262 7.8388 11.7131 9.5164 11.4610 16.3780 12.6840

min -2.7257 -23.6063 -6.7593 -6.1702 -21.2461 -9.7258 -7.4152 -9.2150 -9.6701 -14.2109 -8.5299

s.d. 0.7590 5.8578 1.6658 1.9443 4.8275 2.1385 1.6838 2.3146 2.2612 3.8225 1.9640

Example 3: Daily changes in sovereign CDS spreads

Ireland Italy Germ Greece Portugal Spain

Sept 15, 2008 - Mar 31, 2010

mean 0.0027 0.0018 0.0006 0.0026 0.0025 0.0019

max 0.6018 0.2099 0.1110 0.4459 0.3350 0.1921

min -0.2740 -0.1549 -0.1013 -0.4878 -0.2876 -0.1734

s.d. 0.0802 0.0475 0.0199 0.1124 0.0554 0.0476

Apr 1, 2010 - Nov, 21, 2013

mean -0.0001 0.0008 -0.0001 0.0033 0.0023 0.0005

max 1.1379 0.7180 0.1175 6.9930 1.77066 0.5921

min -1.5245 -0.7404 -0.1336 -27.4580 -1.6724 -0.6960

s.d. 0.1670 0.1277 0.0216 1.0223 0.2526 0.1279
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Table 2: ARCH-LM tests for the Asian currencies crisis period using raw data
and model residuals with di¤erent mimicking factors.
Crisis period July 2, 1997 - December 31, 1998.

Thailand Indonesia Malaysia Australia
ARCH in the raw data in crisis

�2(1) 1.8964 10.5641 1.9581 7.2559
p-value (0.1685) (0.0012) (0.1617) (0.0071)

ARCH in residuals after model using mimicking factor of:
Thailand �2(1) 5.1050 0.5244 1.2496

p-value (0.0239) (0.4690) (0.2636)
Indonesia �2(1) 1.0878 2.8205 8.0135

p-value (0.2970) (0.0931) (0.0046)
Malaysia �2(1) 1.5825 13.0699 2.0852

p-value (0.2084) (0.0003) (0.1487)
Australia �2(1) 0.9136 10.3961 1.3432

p-value (0.3392) (0.0012) (0.2465)
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Table 3: Asian currencies against the US dollar: contagion from Thai baht.
Non-crisis period January 2, 1995 - July 1, 1997. Crisis period July 2, 1997 -

December 31, 1998.

Indonesia Malaysia Australia
Correlation Coe¢ cients
non-crisis period �L 0.0297 0.0973 -0.0186
crisis period: not adjusted �H 0.3194 0.4903 0.2994
crisis period: FR adjusted e�H 0.0847 0.1406 0.0789
t-test of change �H � �L 4.3219 6.2977 4.6985

p-value (0.0114) (0.0040) (0.0091)
t-test of change e�H � �L 0.7920 0.6304 1.4019

p-value (0.2431) (0.2866) (0.1278)
Regression coe¢ cients
non-crisis period �i;L 0.0452 0.0478 -0.0105

s.e. (0.0174) (0.0149) (0.0354)
crisis period �i;H 0.9685 0.4219 0.1182

s.e. (0.1635) (0.0428) (0.0214)
J-test for one factor model
non-crisis period �2(15) 0.8201 2.0646 0.1888

p-value (1.0000) (1.0000) (1.0000)
crisis period �2(15) 5.9532 4.5516 4.1963

p-value (0.9805) (0.9953) (0.9970)
Tests for structural stability
Ghysels-Hall test �2(21) 781.1276 1286.4467 957.2358

p-value (0.0000) (0.0000) (0.0000)
Break in factor loadings �2(1) 1050.966 1534.1026 897.1300

p-value (0.0000) (0.0000) (0.0000)
parameter estimates
non-crisis period bi;L -0.0508 -0.0468 -0.3665

s.e. (0.0001) (0.0000) (0.0001)
!i;0;L 0.0101 0.0046 0.0030
s.e. (0.0000) (0.0000) (0.0000)

crisis period bi;H 1.4889 0.4659 -0.1172
s.e. (11.4371) (1.0627) (0.1072)
!i;0;H 0.2015 0.2452 0.0494
s.e. (3.0605) (0.1885) (0.0264)

t-test of change bi;H � bi;L 2.3472 8.4118 40.5466
p-value (0.0503) (0.0018) (0.0000)
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Table 4: ARCH-LM tests for US industrial sectors for the crisis period using raw data and model residuals with different

mimicking factors.

Crisis period August 9, 2007 - June 30, 2009.

Banking Insurance Industrials Health Utilities Food Info Tech

ARCH in the raw data in crisis

2(1) 6.1260 31.2394 4.0340 22.3827 18.4958 5.0645 4.7180

p-value (0.0133) (0.0000) (0.0446) (0.0000) (0.0000) (0.0244) (0.0298)

ARCH in residuals after model using mimicking factor of:

Banking 2(1) 11.3038 5.0102 13.8225 10.9546 10.2199 3.7938

p-value (0.0008) (0.0252) (0.0002) (0.0009) (0.0014) (0.0514)

Insurance 2(1) 5.1480 37.9830 11.8064 29.0175 8.8670 46.6494

p-value (0.0233) (0.0000) (0.0006) (0.0000) (0.0029) (0.0000)

Industrials 2(1) 10.1200 3.6582 1.3027 0.6927 10.3462 4.4106

p-value (0.0015) (0.0558) (0.2537) (0.4052) (0.0013) (0.0357)

Health 2(1) 3.3662 44.6622 34.1518 29.2348 4.5204 35.4428

p-value (0.0665) (0.0000) (0.0000) (0.0000) (0.0335) (0.0000)

Utilities 2(1) 5.6339 18.5202 54.7497 2.6298 4.5273 21.8354

p-value (0.0186) (0.0000) (0.0000) (0.1049) (0.0333) (0.0000)

Food 2(1) 4.6144 2.5445 4.9309 2.1458 0.3277 2.2555

p-value (0.0317) (0.1107) (0.0264) (0.1430) (0.5670) (0.1331)

Info Tech 2(1) 7.7054 29.7879 9.5449 8.6193 8.7193 11.4718

p-value (0.0055) (0.0000) (0.0020) (0.0033) (0.0033) (0.0007)
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Table 5a: Sectors of the US economy: contagion from banking.

Non-crisis period August 2, 2004 - August 8, 2007. Crisis period August 9, 2007 - June 30, 2009.

Insurance Industrials Health Utilities Food Info Tech

A: Correlation Coefficients
non-crisis period  0.6448 0.7262 0.5866 0.5028 0.4107 0.6781

crisis period: not adjusted  0.8408 0.7682 0.6948 0.6009 0.5835 0.7633

crisis period: FR adjusted e 0.3699 0.2940 0.2404 0.1892 0.1811 0.2897

t-test of change  −  7.9510 1.6576 3.2105 2.4587 4.0198 3.1013

p-value (0.0021) (0.0980) (0.0245) (0.0455) (0.0138) (0.0266)

t-test of change e −  -3.5708 -10.7349 -7.4264 -6.2838 -4.4015 -9.1620

p-value (0.0036) (0.0009) (0.0025) (0.0041) (0.0109) (0.0014)

B: Regression Coefficients
non-crisis period  0.4552 0.4359 0.3309 0.3525 0.3687 0.5008

s.e. (0.0191) (0.0146) (0.0162) (0.0215) (0.0290) (0.0193)

crisis period  0.6661 0.3687 0.2424 0.2448 0.2587 0.3576

s.e. (0.0193) (0.0138) (0.0113) (0.0146) (0.0162) (0.0136)

C: J-test for one factor model

non-crisis period 2(48) 13.4400 7.3939 7.1093 5.5387 8.0015 8.0967

p-value (1.0000) (1.0000) (1.0000) (1.0000) (1.0000) (1.0000)

crisis period 2(48) 22.9327 22.6335 35.4208 32.9703 36.2919 26.4114

p-value (0.9992) (0.9993) (0.9111) (0.9517) (0.8924) (0.9952)

D: Tests for structural stability

Ghysels-Hall test 2(57) 6684.9363 5899.9617 3129.2909 4342.3432 4290.7312 5367.5544

p-value (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Break in factor loadings 2(1) 3259.7417 4762.4342 2290.1074 2923.3895 4994.9196 3541.8982

p-value (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
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Table 5b: Sectors of the US economy: contagion from banking.

Non-crisis period August 2, 2004 - August 8, 2007. Crisis period August 9, 2007 - June 30, 2009.

Insurance Industrials Health Utilities Food Info Tech

E: Parameter estimates

non-crisis period  0.4973 0.5234 0.7652 0.5071 0.8990 0.9114

s.e. (0.0161) (0.0077) (0.0089) (0.0098) (0.0174) (0.0085)

0 0.0071 0.0077 -0.0484 -0.0064 -0.0637 -0.0396

s.e. (0.0026) (0.0012) (0.0014) (0.0015) (0.0027) (0.0013)

crisis period  -1.6073 -1.0278 -0.2532 -0.7620 -0.6651 -0.4247

s.e. (2.5636) (0.6714) (0.76620) (0.8667) (0.4521) (0.8813)

0 3.5852 2.0587 0.6047 1.1243 1.3067 1.2258

s.e. (5.4702) (1.5009) (1.4579) (1.7884) (1.0139) (1.7373)

t-test of change  −  -18.2275 -51.2952 -29.5098 -32.5115 -76.7864 -33.6611

p-value (0.0002) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
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Table 6: Sectors of the US economy: contagion with alternative mimicking factors.

Non-crisis period August 2, 2004 - August 8, 2007. Crisis period August 9, 2007 - June 30, 2009.

Banking Insurance Industrials Health Utilities Food Info Tech

Parameter estimates with insurance as mimicking factor

non-crisis period  0.5199 - 0.0939 0.3250 0.1609 0.4973 0.3784

s.e. (0.0243) - (0.0069) (0.0068) (0.0091) (0.0184) (0.0086)

0 0.0403 - 0.0442 0.0156 0.0224 -0.0079 0.0159

s.e. (0.0024) - (0.0007) (0.0007) (0.0010) (0.0192) (0.0091)

crisis period  0.4234 - 0.9418 0.7194 0.90096 0.4905 1.0862

s.e. (1.6954) - (0.4350) (0.4631) (0.4838) (0.4863) (0.5864)

0 1.3456 - 0.1910 0.8747 -0.0600 0.1184 -0.0760

s.e. (2.0724) - (0.5049) (0.5337) (0.5830) (0.5581) (0.6662)

t-test of change  −  -1.2638 - 43.2789 18.9059 34.3616 -0.3134 26.7946

p-value (0.1478) - (0.0000) (0.0002) (0.0000) (0.3872) (0.0000)

Parameter estimates with food as mimicking factor

non-crisis period  -0.0556 1.0855 0.0779 0.1564 0.6368 - 0.4374

s.e. (0.0239) (0.0237) (0.0008) (0.0055) (0.0085) - (0.0088)

0 0.0720 -0.0433 0.0455 0.0344 -0.0052 - 0.0084

s.e. (0.0028) (0.0028) (0.0009) (0.0008) (0.0010) - (0.0010)

crisis period  0.8507 4.1010 2.8766 2.5680 2.8817 - 2.4410

s.e. (2.4542) (4.6291) (1.1585) (1.1930) (1.4451) - (1.6001)

0 0.4849 -0.3148 -0.2984 -0.3190 -0.3157 - -0.2547

s.e. (0.7982) (1.4392) (0.3769) (0.3785) (0.4523) - (0.4843)

t-test of change  −  8.1993 14.4639 53.6391 44.8819 34.4913 - 27.8021

p-value (0.0019) (0.0004) (0.0000) (0.0000) (0.0000) - (0.0000)
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Table 7: ARCH-LM tests for CDS for the European debt crisis period using raw
data and model residuals with di¤erent mimicking factors. Crisis period April
1, 2010 - November 21, 2013.

Germany Ireland Italy Greece Portugal Spain
ARCH in the raw data in crisis

�2(1) 62.8478 42.0411 24.9851 0.3950 7.4800 35.1931
p-value (0.0000) (0.0000) (0.0173) (0.5297) (0.0062) (0.0000)

ARCH in residuals after model using mimicking factor of:
Germany �2(1) 36.7133 35.9137 7.6560 5.5689 25.8559

p-value (0.0000) (0.0000) (0.0057) (0.0183) (0.0000)
Ireland �2(1) 59.7140 15.3613 35.9649 4.3449 18.0686

p-value (0.0000) (0.0001) (0.0000) (0.0371) (0.0000)
Italy �2(1) 59.7140 35.9649 15.3613 4.3449 18.0686

p-value (0.0000) (0.0000) (0.0001) (0.0371) (0.0000)
Greece �2(1) 22.2626 36.4608 29.2930 19.3448 31.7535

p-value (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Portugal �2(1) 59.7140 35.9649 15.3613 4.3449 18.0686

p-value (0.0000) (0.0000) (0.0001) (0.0371) (0.0000)
Spain �2(1) 59.7140 35.9649 15.3613 4.3449 18.0686

p-value (0.0000) (0.0000) (0.0001) (0.0371) (0.0000)
ARCH in residuals after model using 2 mimicking factors of Germany and Greece
Germany& �2(1) 0.4089 0.4199 0.4171 0.4110
Greece p-value (0.5225) (0.5170) (0.5184) (0.5214)
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Table 8: Two factor model The European sovereign CDS: sources from Greece
and Germany.

Non-crisis period September 15, 2008 - March 31, 2010. Crisis period April 1,
2010 - November 21, 2013.

Ireland Italy Portugal Spain
J-test for two factor model
non-crisis period �2(34) 0.2058 0.1877 0.1914 0.1640

p-value (1.0000) (1.0000) (1.0000) (1.0000)
crisis period �2(34) 0.0468 0.0624 0.0537 0.0600

p-value (1.0000) (1.0000) (1.0000) (1.0000)
Tests for structural stability
Ghysels-Hall test �2(44) 1234.9338 1418.6571 1309.7833 1306.0346

p-value (0.0000) (0.0000) (0.0000) (0.0000)
Break in factor loadings �2(2) 71.0385 185.4015 133.6123 246.8636

p-value (0.0000) (0.0000) (0.0000) (0.0000)
Regression Coe¢ cients
non-crisis period �GRE;i;L 0.1017 0.0977 0.1532 0.1282

s.e. (0.0306) (0.0160) (0.0198) (0.0155)
�GER;i;L 2.0325 1.4007 1.3316 1.3520
s.e. (0.1730) (0.0904) (0.1116) (0.0878)

crisis period �GRE;i;H 0.0094 0.0060 0.0123 0.0059
s.e. (0.0045) (0.0029) (0.0069) (0.0031)
�GER;i;H 4.0652 4.1053 5.8908 3.8589
s.e. (0.2139) (0.1380) (0.1460) (0.1460)

Parameter estimates
non-crisis period bGRE;i;L 0.8717 0.6376 1.1725 1.2094

s.e. (0.0000) (0.0000) (0.0000) (0.0000)
bGER;i;L 5.0838 2.8542 1.1287 1.3801
s.e. (0.0000) (0.0000) (0.0000) (0.0000)
!GRE;i;0;L -0.0009 -0.0003 -0.0011 -0.0013
s.e. (0.0000) (0.0000) (0.0000) (0.0000)
!GER;i;0;L -0.0001 -0.0000 0.0001 0.0009
s.e. (0.0000) (0.0000) (0.0000) (0.0000)

crisis period bGRE;i;H -0.0207 -0.0303 -0.0635 -0.0338
s.e. (0.0002) (0.0002) (0.0004) (0.0001)
bGER;i;H -7.9511 2.9525 -9.0794 -1.6482
s.e. (0.0351) (0.0102) (0.0479) (0.0089)
!GRE;i;0;H 0.0076 0.0076 0.0119 0.0062
s.e. (0.0000) (0.0000) (0.0001) (0.0000)
!GER;i;0;H 0.0007 -0.0000 0.0007 0.0002

(0.0000) (0.0000) (0.0000) (0.0000)
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Figure 1: European Spreads:
5 year CDS premia for Ireland, Italy, Portugal,

Spain and Germany:
10 year bond spread for Greece over the US
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