Momentum Strategies in Futures Markets and Trend-following Funds

Akindynos-Nikolaos (Nick) Baltas
UBS, Imperial College Business School and QMUL
n.baltas@imperial.ac.uk

Robert Kosowski
Imperial College Business School
r.kosowski@imperial.ac.uk

November 25, 2014

We thank QUANTVALLEY /FdR QMI, the Europlace Institute of Finance, INQUIRE Europe and the BNP Paribas Hedge Fund Centre at SMU for financial support.
Motivation

- CTA industry has significantly grown (end of 2012 AUM $329.60bn; 81% systematic).
- Historical outperformance and positive double-digit returns in 2008.
- Disappointing performance in 2009-2013. Capacity constraints?

“Capacity constraints have limited these funds in the past. [...] It’s a problem for trend-followers: the larger they get, the more difficult it is to maintain the diversity of their trading books. While equity or bond futures markets are deep and liquid, markets for most agricultural contracts -soy or wheat, for example- are less so”.

The Financial Times, November 27, 2011, “Winton’s head is a proud speculator”.

- Main driver of CTA strategies is claimed to be trend-following: buying/selling assets, whose price is rising/falling. (Covel 2009, Hurst, Ooi & Pedersen 2012, 2013)
- Hayes (2011), Arnold (2012) and Hurst, Ooi & Pedersen (2013): CTAs differ in their forecast horizons (long vs short-term)
- We combine research on momentum strategies in futures markets with research on hedge funds/CTAs and test for capacity constraints.
Motivation

- CTA industry has significantly grown (end of 2012 AUM $329.60bn; 81% systematic).
- Historical outperformance and positive double-digit returns in 2008.
- Disappointing performance in 2009-2013. Capacity constraints?

“Capacity constraints have limited these funds in the past. [...] It’s a problem for trend-followers: the larger they get, the more difficult it is to maintain the diversity of their trading books. While equity or bond futures markets are deep and liquid, markets for most agricultural contracts -soy or wheat, for example- are less so”.

The Financial Times, November 27, 2011, “Winton’s head is a proud speculator”.

- Main driver of CTA strategies is claimed to be trend-following: buying/selling assets, whose price is rising/falling. (Covel 2009, Hurst, Ooi & Pedersen 2012, 2013)
- Hayes (2011), Arnold (2012) and Hurst, Ooi & Pedersen (2013): CTAs differ in their forecast horizons (long vs short-term)
- We combine research on momentum strategies in futures markets with research on hedge funds/CTAs and test for capacity constraints.
Motivation

- CTA industry has significantly grown (end of 2012 AUM $329.60bn; 81% systematic).

- Historical outperformance and positive double-digit returns in 2008.

- Disappointing performance in 2009-2013. Capacity constraints?

“Capacity constraints have limited these funds in the past. [...] It's a problem for trend-followers: the larger they get, the more difficult it is to maintain the diversity of their trading books. While equity or bond futures markets are deep and liquid, markets for most agricultural contracts -soy or wheat, for example- are less so”.

The Financial Times, November 27, 2011, “Winton’s head is a proud speculator”.

- Main driver of CTA strategies is claimed to be trend-following: buying/selling assets, whose price is rising/falling. (Covel 2009, Hurst, Ooi & Pedersen 2012, 2013)


- Hayes (2011), Arnold (2012) and Hurst, Ooi & Pedersen (2013): CTAs differ in their forecast horizons (long vs short-term)

- We combine research on momentum strategies in futures markets with research on hedge funds/CTAs and test for capacity constraints.
Motivation

- CTA industry has significantly grown (end of 2012 AUM $329.60bn; 81% systematic).
- Historical outperformance and positive double-digit returns in 2008.
- Disappointing performance in 2009-2013. **Capacity constraints?**

“In Capacity constraints have limited these funds in the past. [...] It's a problem for trend-followers: the larger they get, the more difficult it is to maintain the diversity of their trading books. While equity or bond futures markets are deep and liquid, markets for most agricultural contracts -soy or wheat, for example- are less so”.

The Financial Times, November 27, 2011, “Winton’s head is a proud speculator”.

- Main driver of **CTA strategies** is claimed to be **trend-following**: buying/selling assets, whose price is rising/falling. (Covel 2009, Hurst, Ooi & Pedersen 2012, 2013)
- Hayes (2011), Arnold (2012) and Hurst, Ooi & Pedersen (2013): CTAs differ in their forecast horizons (long vs short-term)
- We combine research on momentum strategies in futures markets with research on hedge funds/CTAs and test for capacity constraints.
Motivation

- CTA industry has significantly grown (end of 2012 AUM $329.60bn; 81% systematic).
- Historical outperformance and positive double-digit returns in 2008.
- Disappointing performance in 2009-2013. **Capacity constraints?**

"**Capacity constraints have limited these funds in the past. [...] It’s a problem for trend-followers: the larger they get, the more difficult it is to maintain the diversity of their trading books. While equity or bond futures markets are deep and liquid, markets for most agricultural contracts -soy or wheat, for example- are less so”**.

The Financial Times, November 27, 2011, “*Winton’s head is a proud speculator*”.

- Main driver of **CTA strategies** is claimed to be **trend-following**: buying/selling assets, whose price is rising/falling. (Covel 2009, Hurst, Ooi & Pedersen 2012, 2013)
- Hayes (2011), Arnold (2012) and Hurst, Ooi & Pedersen (2013): CTAs differ in their forecast horizons (long vs short-term)
- We combine research on momentum strategies in futures markets with research on hedge funds/CTAs and test for capacity constraints.
Motivation

- CTA industry has significantly grown (end of 2012 AUM $329.60bn; 81% systematic).
- Historical outperformance and positive double-digit returns in 2008.
- Disappointing performance in 2009-2013. Capacity constraints?

"Capacity constraints have limited these funds in the past. [...] It’s a problem for trend-followers: the larger they get, the more difficult it is to maintain the diversity of their trading books. While equity or bond futures markets are deep and liquid, markets for most agricultural contracts -soy or wheat, for example- are less so".

The Financial Times, November 27, 2011, “Winton’s head is a proud speculator”.

- Main driver of CTA strategies is claimed to be trend-following: buying/selling assets, whose price is rising/falling. (Covel 2009, Hurst, Ooi & Pedersen 2012, 2013)
- Hayes (2011), Arnold (2012) and Hurst, Ooi & Pedersen (2013): CTAs differ in their forecast horizons (long vs short-term)
- We combine research on momentum strategies in futures markets with research on hedge funds/CTAs and test for capacity constraints.
Motivation

- CTA industry has significantly grown (end of 2012 AUM $329.60bn; 81% systematic).
- Historical outperformance and positive double-digit returns in 2008.
- Disappointing performance in 2009-2013. Capacity constraints?

“Capacity constraints have limited these funds in the past. [...] It’s a problem for trend-followers: the larger they get, the more difficult it is to maintain the diversity of their trading books. While equity or bond futures markets are deep and liquid, markets for most agricultural contracts - soy or wheat, for example- are less so”. The Financial Times, November 27, 2011, “Winton’s head is a proud speculator”.

- Main driver of CTA strategies is claimed to be trend-following: buying/selling assets, whose price is rising/falling. (Covel 2009, Hurst, Ooi & Pedersen 2012, 2013)


- Hayes (2011), Arnold (2012) and Hurst, Ooi & Pedersen (2013): CTAs differ in their forecast horizons (long vs short-term)

- We combine research on momentum strategies in futures markets with research on hedge funds/CTAs and test for capacity constraints.
Motivation

- CTA industry has significantly grown (end of 2012 AUM $329.60bn; 81% systematic).
- Historical outperformance and positive double-digit returns in 2008.
- Disappointing performance in 2009-2013. **Capacity constraints**?

“Capacity constraints have limited these funds in the past. [...] It’s a problem for trend-followers: the larger they get, the more difficult it is to maintain the diversity of their trading books. While equity or bond futures markets are deep and liquid, markets for most agricultural contracts - soy or wheat, for example - are less so”.

The Financial Times, November 27, 2011, “Winton’s head is a proud speculator”.

- Main driver of CTA strategies is claimed to be trend-following: buying/selling assets, whose price is rising/falling. (Covel 2009, Hurst, Ooi & Pedersen 2012, 2013)
- Hayes (2011), Arnold (2012) and Hurst, Ooi & Pedersen (2013): CTAs differ in their forecast horizons (long vs short-term)

- We combine research on momentum strategies in futures markets with research on hedge funds/CTAs and test for capacity constraints.
Motivation

- CTA industry has significantly grown (end of 2012 AUM $329.60bn; 81% systematic).

- Historical outperformance and positive double-digit returns in 2008.

- Disappointing performance in 2009-2013. **Capacity constraints?**

> “Capacity constraints have limited these funds in the past. [...] It’s a problem for trend-followers: the larger they get, the more difficult it is to maintain the diversity of their trading books. While equity or bond futures markets are deep and liquid, markets for most agricultural contracts -soy or wheat, for example- are less so”.

The Financial Times, November 27, 2011, “Winton’s head is a proud speculator”.

- Main driver of **CTA strategies** is claimed to be trend-following: buying/selling assets, whose price is rising/falling. (Covel 2009, Hurst, Ooi & Pedersen 2012, 2013)


- Hayes (2011), Arnold (2012) and Hurst, Ooi & Pedersen (2013): CTAs differ in their **forecast horizons** (long vs short-term)

- We combine research on momentum strategies in futures markets with research on hedge funds/CTAs and test for capacity constraints.
Motivation - The Systematic CTA Industry (F7)

Panel A: Number of Systematic CTA Funds vs. Systematic CTA AUM

Panel B: Annual CTA Fund Flows
Main Findings - Contributions

1. In-depth analysis of time-series momentum strategies:
   - Larger cross-section (75 contracts), longer sample period (1978-2013), more frequencies (M: monthly, W: weekly, D: daily).
   - Strong momentum patterns across all trading frequencies.
   - M, W, D strategies have low cross-correlation, exhibit counter-cyclicality and cannot be explained by standard factor models.

2. CTA indices statistically and economically significantly exposed to M, W and D:
   - Inclusion of M, W, D strategies among benchmark factors for HF returns increases dramatically the explanatory power of the model.

3. No evidence of capacity constraints in time-series momentum strategies
   - Negative M, W, D performance-flow relationship, but time-varying and not significant.
   - Robust to different asset classes and consistent with liquid futures markets.
   - Robustness check using alternative methodology based on open interest comparison confirms conclusions.

→ Implications for HF studies and CTA investors.
Main Findings - Contributions

1. In-depth analysis of time-series momentum strategies:
   - Larger cross-section (75 contracts), longer sample period (1978-2013), more frequencies (M: monthly, W: weekly, D: daily).
   - Strong momentum patterns across all trading frequencies.
   - M, W, D strategies have low cross-correlation, exhibit counter-cyclicality and cannot be explained by standard factor models.

2. CTA indices statistically and economically significantly exposed to M, W and D:
   - Inclusion of M, W, D strategies among benchmark factors for HF returns increases dramatically the explanatory power of the model.

3. No evidence of capacity constraints in time-series momentum strategies
   - Negative M, W, D performance-flow relationship, but time-varying and not significant.
   - Robust to different asset classes and consistent with liquid futures markets.
   - Robustness check using alternative methodology based on open interest comparison confirms conclusions.

→ Implications for HF studies and CTA investors.
Main Findings - Contributions

1. In-depth analysis of time-series momentum strategies:
   - Larger cross-section (75 contracts), longer sample period (1978-2013), more frequencies (M: monthly, W: weekly, D: daily).
   - Strong momentum patterns across all trading frequencies.
   - M, W, D strategies have low cross-correlation, exhibit counter-cyclicality and cannot be explained by standard factor models.

2. CTA indices statistically and economically significantly exposed to M, W and D:
   - Inclusion of M, W, D strategies among benchmark factors for HF returns increases dramatically the explanatory power of the model.

3. No evidence of capacity constraints in time-series momentum strategies
   - Negative M, W, D performance-flow relationship, but time-varying and not significant.
   - Robust to different asset classes and consistent with liquid futures markets.
   - Robustness check using alternative methodology based on open interest comparison confirms conclusions.

→ Implications for HF studies and CTA investors.
Main Findings - Contributions

1. In-depth analysis of time-series momentum strategies:
   - Larger cross-section (75 contracts), longer sample period (1978-2013), more frequencies (M: monthly, W: weekly, D: daily).
   - Strong momentum patterns across all trading frequencies.
     - M, W, D strategies have low cross-correlation, exhibit counter-cyclicality and cannot be explained by standard factor models.

2. CTA indices statistically and economically significantly exposed to M, W and D:
   - Inclusion of M, W, D strategies among benchmark factors for HF returns increases dramatically the explanatory power of the model.

3. No evidence of capacity constraints in time-series momentum strategies
   - Negative M, W, D performance-flow relationship, but time-varying and not significant.
   - Robust to different asset classes and consistent with liquid futures markets.
   - Robustness check using alternative methodology based on open interest comparison confirms conclusions.

→ Implications for HF studies and CTA investors.
Main Findings - Contributions

1. In-depth analysis of time-series momentum strategies:
   - Larger cross-section (75 contracts), longer sample period (1978-2013), more frequencies (M: monthly, W: weekly, D: daily).
   - Strong momentum patterns across all trading frequencies.
   - M, W, D strategies have low cross-correlation, exhibit counter-cyclicality and cannot be explained by standard factor models.

2. CTA indices statistically and economically significantly exposed to M, W and D:
   - Inclusion of M, W, D strategies among benchmark factors for HF returns increases dramatically the explanatory power of the model.

3. No evidence of capacity constraints in time-series momentum strategies
   - Negative M, W, D performance-flow relationship, but time-varying and not significant.
   - Robust to different asset classes and consistent with liquid futures markets.
   - Robustness check using alternative methodology based on open interest comparison confirms conclusions.

→ Implications for HF studies and CTA investors.
Main Findings - Contributions

1. In-depth analysis of time-series momentum strategies:
   - Larger cross-section (75 contracts), longer sample period (1978-2013), more frequencies (M: monthly, W: weekly, D: daily).
   - Strong momentum patterns across all trading frequencies.
   - M, W, D strategies have low cross-correlation, exhibit counter-cyclicality and cannot be explained by standard factor models.

2. CTA indices statistically and economically significantly exposed to M, W and D:
   - Inclusion of M, W, D strategies among benchmark factors for HF returns increases dramatically the explanatory power of the model.

3. No evidence of capacity constraints in time-series momentum strategies
   - Negative M, W, D performance-flow relationship, but time-varying and not significant.
   - Robust to different asset classes and consistent with liquid futures markets.
   - Robustness check using alternative methodology based on open interest comparison confirms conclusions.

→ Implications for HF studies and CTA investors.
Main Findings - Contributions

1. In-depth analysis of time-series momentum strategies:
   ▶ Larger cross-section (75 contracts), longer sample period (1978-2013), more frequencies (M: monthly, W: weekly, D: daily).
   ▶ Strong momentum patterns across all trading frequencies.
   ▶ M, W, D strategies have low cross-correlation, exhibit counter-cyclicality and cannot be explained by standard factor models.

2. CTA indices statistically and economically significantly exposed to M, W and D:
   ▶ Inclusion of M, W, D strategies among benchmark factors for HF returns increases dramatically the explanatory power of the model.

3. No evidence of capacity constraints in time-series momentum strategies
   ▶ Negative M, W, D performance-flow relationship, but time-varying and not significant.
     ▶ Robust to different asset classes and consistent with liquid futures markets.
     ▶ Robustness check using alternative methodology based on open interest comparison confirms conclusions.

→ Implications for HF studies and CTA investors.
Main Findings - Contributions

1. In-depth analysis of time-series momentum strategies:
   - Larger cross-section (75 contracts), longer sample period (1978-2013), more frequencies (M: monthly, W: weekly, D: daily).
   - Strong momentum patterns across all trading frequencies.
   - M, W, D strategies have low cross-correlation, exhibit counter-cyclicality and cannot be explained by standard factor models.

2. CTA indices statistically and economically significantly exposed to M, W and D:
   - Inclusion of M, W, D strategies among benchmark factors for HF returns increases dramatically the explanatory power of the model.

3. No evidence of capacity constraints in time-series momentum strategies
   - Negative M, W, D performance-flow relationship, but time-varying and not significant.
   - Robust to different asset classes and consistent with liquid futures markets.
   - Robustness check using alternative methodology based on open interest comparison confirms conclusions.

→ Implications for HF studies and CTA investors.
Main Findings - Contributions

1. In-depth analysis of time-series momentum strategies:
   - Larger cross-section (75 contracts), longer sample period (1978-2013), more frequencies (M: monthly, W: weekly, D: daily).
   - Strong momentum patterns across all trading frequencies.
   - M, W, D strategies have low cross-correlation, exhibit counter-cyclicality and cannot be explained by standard factor models.

2. CTA indices statistically and economically significantly exposed to M, W and D:
   - Inclusion of M, W, D strategies among benchmark factors for HF returns increases dramatically the explanatory power of the model.

3. No evidence of capacity constraints in time-series momentum strategies
   - Negative M, W, D performance-flow relationship, but time-varying and not significant.
   - Robust to different asset classes and consistent with liquid futures markets.
   - Robustness check using alternative methodology based on open interest comparison confirms conclusions.

→ Implications for HF studies and CTA investors.
Main Findings - Contributions

1. In-depth analysis of time-series momentum strategies:
   ▶ Larger cross-section (75 contracts), longer sample period (1978-2013), more frequencies (M: monthly, W: weekly, D: daily).
   ▶ Strong momentum patterns across all trading frequencies.
   ▶ M, W, D strategies have low cross-correlation, exhibit counter-cyclicality and cannot be explained by standard factor models.

2. CTA indices statistically and economically significantly exposed to M, W and D:
   ▶ Inclusion of M, W, D strategies among benchmark factors for HF returns increases dramatically the explanatory power of the model.

3. No evidence of capacity constraints in time-series momentum strategies
   ▶ Negative M, W, D performance-flow relationship, but time-varying and not significant.
   ▶ Robust to different asset classes and consistent with liquid futures markets.
   ▶ Robustness check using alternative methodology based on open interest comparison confirms conclusions.

→ Implications for HF studies and CTA investors.

Nick Baltas (UBS, Imperial College, QMUL)
Related Literature


- **Rational and behavioural explanations of serial correlation in returns**:

Related Literature


● **Rational and behavioural explanations of serial correlation in returns:**

Related Literature


- **Rational and behavioural explanations of serial correlation in returns**:

Related Literature


- **Rational and behavioural explanations of serial correlation in returns**:  

Related Literature


- **Rational and behavioural explanations of serial correlation in returns**:

Data

- **Futures Data**
  - Source: **TickData**
  - Daily opening/high/low/closing futures prices for 75 assets: 26 commodities, 23 equity indices, 7 currencies, 15 government bonds and 4 STIR.
  - Construct daily excess returns by rolling-over so that we always trade the most liquid contract; prices are *backwards ratio-adjusted* at a roll-over date.

- **CTA Fund data:**
  - Source: **BarclayHedge Database**
  - Monthly returns and AUM for all CTA’s trading in USD.
  - 2663 unique CTA funds (after removing duplicates); total AUM Jan. 2012 $305bn.
  - 1348 systematic CTA funds; total AUM Jan. 2012 $267bn.
  - CTA Index: (a) BarclayHedge CTA index, (b) custom-made AUM-weighted CTA index.

- **Positions of Traders:**
  - Source: **Commodity Futures Trading Commission (CFTC)**
  - Monthly open interest of futures contracts for 43 US-traded assets (out of our 75): 25 commodities, 6 equity indices, 7 currencies and 5 government bonds.
Data

- **Futures Data**
  - **Source:** TickData
  - **Dec. 1974 - Feb. 2013.**
  - Daily opening/high/low/closing futures prices for 75 assets:
    - 26 commodities, 23 equity indices, 7 currencies, 15 government bonds and 4 STIR.
  - Construct daily excess returns by rolling-over so that we always trade the most liquid contract; prices are *backwards ratio-adjusted* at a roll-over date.

- **CTA Fund data:**
  - **Source:** BarclayHedge Database
  - **Feb. 1975 - Jan. 2012.**
  - Monthly returns and AUM for all CTA's trading in USD.
  - 2663 unique CTA funds (after removing duplicates); total AUM Jan. 2012 $305bn.
  - 1348 systematic CTA funds; total AUM Jan. 2012 $267bn.
  - CTA Index: (a) BarclayHedge CTA index, (b) custom-made AUM-weighted CTA index.

- **Positions of Traders:**
  - **Source:** Commodity Futures Trading Commission (CFTC)
  - **Jan. 1986 - Dec. 2011.**
  - Monthly open interest of futures contracts for 43 US-traded assets (out of our 75):
    - 25 commodities, 6 equity indices, 7 currencies and 5 government bonds.
**Data**

- **Futures Data**
  - Source: **TickData**
  - Daily opening/high/low/closing futures prices for 75 assets: 26 commodities, 23 equity indices, 7 currencies, 15 government bonds and 4 STIR.
  - Construct daily excess returns by rolling-over so that we always trade the most liquid contract; prices are *backwards ratio-adjusted* at a roll-over date.

- **CTA Fund data:**
  - Source: **BarclayHedge Database**
  - Monthly returns and AUM for all CTA's trading in USD.
  - 2663 unique CTA funds (after removing duplicates); total AUM Jan. 2012 $305bn.
  - 1348 systematic CTA funds; total AUM Jan. 2012 $267bn.
  - CTA Index: (a) BarclayHedge CTA index, (b) custom-made AUM-weighted CTA index.

- **Positions of Traders:**
  - Source: **Commodity Futures Trading Commission (CFTC)**
  - Monthly open interest of futures contracts for 43 US-traded assets (out of our 75): 25 commodities, 6 equity indices, 7 currencies and 5 government bonds.
Data

- **Futures Data**
  - **Source:** TickData
  - **Dec. 1974 - Feb. 2013.**
  - Daily opening/high/low/closing futures prices for 75 assets: 26 commodities, 23 equity indices, 7 currencies, 15 government bonds and 4 STIR.
  - Construct daily excess returns by rolling-over so that we always trade the most liquid contract; prices are *backwards ratio-adjusted* at a roll-over date.

- **CTA Fund data:**
  - **Source:** BarclayHedge Database
  - **Feb. 1975 - Jan. 2012.**
  - Monthly returns and AUM for all CTA's trading in USD.
  - 2663 unique CTA funds (after removing duplicates); total AUM Jan. 2012 $305bn.
  - 1348 systematic CTA funds; total AUM Jan. 2012 $267bn.
  - CTA Index: (a) BarclayHedge CTA index, (b) custom-made AUM-weighted CTA index.

- **Positions of Traders:**
  - **Source:** Commodity Futures Trading Commission (CFTC)
  - **Jan. 1986 - Dec. 2011.**
  - Monthly open interest of futures contracts for 43 US-traded assets (out of our 75): 25 commodities, 6 equity indices, 7 currencies and 5 government bonds.
Serial Correlation and Return Predictability

- Assess the amount of predictability inherent in lagged monthly, weekly and daily returns.
- Pooled time-series cross-sectional regression:

\[
\frac{R(t - 1, t)}{\sigma(t - 1; 60)} = \alpha + \beta\lambda \frac{R(t - \lambda - 1, t - \lambda)}{\sigma(t - \lambda - 1; 60)} + \epsilon(t)
\]

- Returns are risk adjusted by the 60-day volatility so that pooling of the returns is admissible.
- Quantity of interest: \( t \)-statistic of \( \beta\lambda \) for each lag \( \lambda = 1, 2, \ldots, 60 \) months, weeks, days.
- \( t \)-statistics are computed using standard errors clustered by time and asset (Petersen 2009, Gow, Ormazabal & Taylor (2010), Cameron, Gelbach & Miller 2011, Thompson 2011).
- Large and significant \( t(\beta\lambda) \) support the hypothesis of time-series return predictability.
Return Predictability (F1)

- Pooled panel regression with 2-way clustered t-statistics [Dec.1974 - Feb.2013]: 

Panel A: Monthly Frequency

Panel B: Weekly Frequency

Panel C: Daily Frequency

Nick Baltas (UBS, Imperial College, QMUL)
Time-Series Momentum

- Construction of the return series of the *time-series momentum* strategy:

\[
R^K_J (t, t + K) = \frac{1}{N_t} \sum_{i=1}^{N_t} \text{sign} [R_i (t - J, t)] \cdot \frac{40\%}{\sigma_i (t; 60)} \cdot R_i (t, t + K),
\]

where:

- \( J, K \): Lookback and holding periods measured in months, weeks, days.
- \( N_t \): number of available assets at time \( t \).
- \( \sigma_i (t; 60) \): 60-day estimate at time \( t \) of the realized volatility of the \( i^{th} \) asset.
- \( 1/K^{th} \) of the portfolio is rebalanced every month/week/day following Jegadeesh & Titman’s (2001) overlapping methodology.

- Evaluate momentum profitability for a grid of lookback (\( J \)) and investment periods (\( K \)) across various trading frequencies:
  
  - Monthly strategies with \( K, J \in \{1, 3, 6, 9, 12, 24, 36\} \) months.
  - Weekly (Wed-to-Wed) strategies with \( K, J \in \{1, 2, 4, 6, 8, 12, 26\} \) weeks.
  - Daily strategies with \( K, J \in \{1, 3, 5, 10, 15, 30, 60\} \) days.
Time-Series Momentum

Construction of the return series of the **time-series momentum** strategy:

\[ R^K_J(t, t + K) = \frac{1}{N_t} \sum_{i=1}^{N_t} \text{sign} \left[ R_i(t - J, t) \right] \cdot \frac{40\%}{\sigma_i(t; 60)} \cdot R_i(t, t + K) , \]

where:

- \( J, K \): Lookback and holding periods measured in months, weeks, days.
- \( N_t \): number of available assets at time \( t \).
- \( \sigma_i(t; 60) \): 60-day estimate at time \( t \) of the realized volatility of the \( i^{th} \) asset.
- \( 1/K^{th} \) of the portfolio is rebalanced every month/week/day following Jegadeesh & Titman’s (2001) overlapping methodology.

Evaluate momentum profitability for a grid of lookback (\( J \)) and investment periods (\( K \)) across various trading frequencies:

- Monthly strategies with \( K, J \in \{1, 3, 6, 9, 12, 24, 36\} \) months.
- Weekly (Wed-to-Wed) strategies with \( K, J \in \{1, 2, 4, 6, 8, 12, 26\} \) weeks.
- Daily strategies with \( K, J \in \{1, 3, 5, 10, 15, 30, 60\} \) days.
Time-Series Momentum

- Construction of the return series of the **time-series momentum** strategy:

\[ R^K_J (t, t + K) = \frac{1}{N_t} \sum_{i=1}^{N_t} \text{sign} [R_i (t - J, t)] \cdot \frac{40\%}{\sigma_i (t; 60)} \cdot R_i (t, t + K), \]

where:

- \( J, K \): Lookback and holding periods measured in months, weeks, days.
- \( N_t \): number of available assets at time \( t \).
- \( \sigma_i (t; 60) \): 60-day estimate at time \( t \) of the realized volatility of the \( i^{th} \) asset.
- \( 1/K^{th} \) of the portfolio is rebalanced every month/week/day following Jegadeesh & Titman’s (2001) overlapping methodology.

- Evaluate momentum profitability for a grid of lookback (\( J \)) and investment periods (\( K \)) across various trading frequencies:

  - Monthly strategies with \( K, J \in \{1, 3, 6, 9, 12, 24, 36\} \) months.
  - Weekly (Wed-to-Wed) strategies with \( K, J \in \{1, 2, 4, 6, 8, 12, 26\} \) weeks.
  - Daily strategies with \( K, J \in \{1, 3, 5, 10, 15, 30, 60\} \) days.
Time-Series Momentum (T2)

<table>
<thead>
<tr>
<th></th>
<th>MONTHLY</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>24</td>
<td>36</td>
</tr>
<tr>
<td>1</td>
<td>0.76</td>
<td>0.81</td>
<td>0.77</td>
<td>0.84</td>
<td>0.98</td>
<td>0.62</td>
<td>0.45</td>
</tr>
<tr>
<td>3</td>
<td>0.71</td>
<td>0.61</td>
<td>0.59</td>
<td>0.78</td>
<td>0.74</td>
<td>0.49</td>
<td>0.35</td>
</tr>
<tr>
<td>6</td>
<td>0.74</td>
<td>0.64</td>
<td>0.76</td>
<td>0.76</td>
<td>0.65</td>
<td>0.44</td>
<td>0.26</td>
</tr>
<tr>
<td>9</td>
<td>1.00</td>
<td>1.06</td>
<td>0.95</td>
<td>0.83</td>
<td>0.72</td>
<td>0.46</td>
<td>0.32</td>
</tr>
<tr>
<td>12</td>
<td><strong>1.11</strong></td>
<td>0.97</td>
<td>0.79</td>
<td>0.68</td>
<td>0.59</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>24</td>
<td>0.58</td>
<td>0.51</td>
<td>0.44</td>
<td>0.36</td>
<td>0.30</td>
<td>0.16</td>
<td>0.12</td>
</tr>
<tr>
<td>36</td>
<td>0.56</td>
<td>0.49</td>
<td>0.41</td>
<td>0.34</td>
<td>0.28</td>
<td>0.18</td>
<td>0.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>WEEKLY</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>12</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>0.49</td>
<td>0.85</td>
<td>0.94</td>
<td>0.85</td>
<td>0.95</td>
<td>0.89</td>
<td>0.86</td>
</tr>
<tr>
<td>2</td>
<td>0.82</td>
<td>0.89</td>
<td>0.79</td>
<td>0.71</td>
<td>0.83</td>
<td>0.83</td>
<td>0.85</td>
</tr>
<tr>
<td>4</td>
<td>0.97</td>
<td>0.95</td>
<td>0.75</td>
<td>0.71</td>
<td>0.76</td>
<td>0.76</td>
<td>0.78</td>
</tr>
<tr>
<td>6</td>
<td>0.94</td>
<td>0.85</td>
<td>0.73</td>
<td>0.73</td>
<td>0.74</td>
<td>0.71</td>
<td>0.75</td>
</tr>
<tr>
<td>8</td>
<td><strong>0.98</strong></td>
<td>0.93</td>
<td>0.80</td>
<td>0.74</td>
<td>0.74</td>
<td>0.70</td>
<td>0.76</td>
</tr>
<tr>
<td>12</td>
<td>1.00</td>
<td>1.03</td>
<td>0.86</td>
<td>0.77</td>
<td>0.73</td>
<td>0.68</td>
<td>0.65</td>
</tr>
<tr>
<td>26</td>
<td>0.95</td>
<td>0.91</td>
<td>0.79</td>
<td>0.73</td>
<td>0.71</td>
<td>0.68</td>
<td>0.77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DAILY</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>1.42</td>
<td>0.58</td>
<td>0.64</td>
<td>0.68</td>
<td>0.85</td>
<td>0.67</td>
<td>0.65</td>
</tr>
<tr>
<td>3</td>
<td>1.13</td>
<td>0.46</td>
<td>0.33</td>
<td>0.61</td>
<td>0.82</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>5</td>
<td>1.12</td>
<td>0.49</td>
<td>0.32</td>
<td>0.67</td>
<td>0.83</td>
<td>0.79</td>
<td>0.83</td>
</tr>
<tr>
<td>10</td>
<td>0.93</td>
<td>0.62</td>
<td>0.60</td>
<td>0.76</td>
<td>0.79</td>
<td>0.68</td>
<td>0.75</td>
</tr>
<tr>
<td>15</td>
<td><strong>1.13</strong></td>
<td>0.91</td>
<td>0.83</td>
<td>0.88</td>
<td>0.78</td>
<td>0.67</td>
<td>0.74</td>
</tr>
<tr>
<td>30</td>
<td>1.06</td>
<td>0.90</td>
<td>0.85</td>
<td>0.79</td>
<td>0.72</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>60</td>
<td>1.02</td>
<td>1.00</td>
<td>0.97</td>
<td>0.95</td>
<td>0.88</td>
<td>0.73</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Refer to the paper for other statistics (average return, alpha etc.) and subsample analysis; the patterns persist.

Nick Baltas (UBS, Imperial College, QMUL)
Futures-based Trend-following Benchmark Strategies (T3)

- Focus on triple $M_{12}^1$, $W_8^1$ and $D_{15}^1$ for the rest of the analysis.
- *Futures-based Trend-following Benchmark* (“FTB” in short) strategies.
- Results are robust to other choices. Statistics for period Jan.1978 - Feb.2013:

<table>
<thead>
<tr>
<th>Performance Statistics</th>
<th>MSCI $^{xs}$</th>
<th>$M_{12}^1$</th>
<th>$W_8^1$</th>
<th>$D_{15}^1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann. Mean Ret (%)</td>
<td>3.42</td>
<td>16.29</td>
<td>12.44</td>
<td>16.97</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.64</td>
<td>-0.23</td>
<td>0.67</td>
<td>1.50</td>
</tr>
<tr>
<td>CAPM Beta</td>
<td>1</td>
<td>-0.01</td>
<td>-0.14**</td>
<td>-0.21**</td>
</tr>
<tr>
<td>Ann. Sharpe ratio</td>
<td>0.23</td>
<td>1.11</td>
<td>0.98</td>
<td>1.13</td>
</tr>
<tr>
<td>MDD (%)</td>
<td>59.82</td>
<td>19.10</td>
<td>14.65</td>
<td>14.73</td>
</tr>
<tr>
<td>MDD Period</td>
<td>110</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Monthly Turnover (%)</td>
<td></td>
<td>23.5</td>
<td>77.1</td>
<td>238.1</td>
</tr>
<tr>
<td>After 2/20 Fees Ret (%)</td>
<td></td>
<td>10.75</td>
<td>7.62</td>
<td>11.08</td>
</tr>
<tr>
<td>After 2/20 Fees SR (%)</td>
<td></td>
<td>0.74</td>
<td>0.61</td>
<td>0.75</td>
</tr>
<tr>
<td>Correlation Matrix</td>
<td></td>
<td>$M_{12}^1$</td>
<td>$W_8^1$</td>
<td>$D_{15}^1$</td>
</tr>
<tr>
<td>$M_{12}^1$</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W_8^1$</td>
<td>0.42</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D_{15}^1$</td>
<td>0.28</td>
<td>0.55</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>
Futures-based Trend-following Benchmark Strategies (T3)

- Focus on triple $M_{12}^1$, $W_8^1$ and $D_{15}^1$ for the rest of the analysis.
- **Futures-based Trend-following Benchmark** ("FTB" in short) strategies.
- Results are robust to other choices. Statistics for period Jan.1978 - Feb.2013:

<table>
<thead>
<tr>
<th>Performance Statistics</th>
<th>MSCI$^{xs}$</th>
<th>$M_{12}^1$</th>
<th>$W_8^1$</th>
<th>$D_{15}^1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann. Mean Ret (%)</td>
<td>3.42</td>
<td>16.29</td>
<td>12.44</td>
<td>16.97</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.64</td>
<td>-0.23</td>
<td>0.67</td>
<td>1.50</td>
</tr>
<tr>
<td>CAPM Beta</td>
<td>1</td>
<td>-0.01</td>
<td>-0.14**</td>
<td>-0.21**</td>
</tr>
<tr>
<td>Ann. Sharpe ratio</td>
<td>0.23</td>
<td>1.11</td>
<td>0.98</td>
<td>1.13</td>
</tr>
<tr>
<td>MDD (%)</td>
<td>59.82</td>
<td>19.10</td>
<td>14.65</td>
<td>14.73</td>
</tr>
<tr>
<td>MDD Period</td>
<td>110</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Monthly Turnover (%)</td>
<td></td>
<td>23.5</td>
<td>77.1</td>
<td>238.1</td>
</tr>
<tr>
<td>After 2/20 Fees Ret (%)</td>
<td></td>
<td>10.75</td>
<td>7.62</td>
<td>11.08</td>
</tr>
<tr>
<td>After 2/20 Fees SR (%)</td>
<td></td>
<td>0.74</td>
<td>0.61</td>
<td>0.75</td>
</tr>
<tr>
<td>Correlation Matrix</td>
<td></td>
<td>$M_{12}^1$</td>
<td>$W_8^1$</td>
<td>$D_{15}^1$</td>
</tr>
<tr>
<td>$M_{12}^1$</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$W_8^1$</td>
<td>0.42</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D_{15}^1$</td>
<td>0.28</td>
<td>0.55</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>
Futures-based Trend-following Benchmark Strategies (T3)

- Focus on triple $M_{12}^1$, $W_8^1$ and $D_{15}^1$ for the rest of the analysis.
- Futures-based Trend-following Benchmark ("FTB" in short) strategies.
- Results are robust to other choices. Statistics for period Jan.1978 - Feb.2013:

<table>
<thead>
<tr>
<th>Performance Statistics</th>
<th>MSCI$^{ex}$</th>
<th>$M_{12}^1$</th>
<th>$W_8^1$</th>
<th>$D_{15}^1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann. Mean Ret (%)</td>
<td>3.42</td>
<td>16.29</td>
<td>12.44</td>
<td>16.97</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.64</td>
<td>-0.23</td>
<td>0.67</td>
<td>1.50</td>
</tr>
<tr>
<td>CAPM Beta</td>
<td>1</td>
<td>-0.01</td>
<td>-0.14**</td>
<td>-0.21**</td>
</tr>
<tr>
<td>Ann. Sharpe ratio</td>
<td>0.23</td>
<td>1.11</td>
<td>0.98</td>
<td>1.13</td>
</tr>
<tr>
<td>MDD (%)</td>
<td>59.82</td>
<td>19.10</td>
<td>14.65</td>
<td>14.73</td>
</tr>
<tr>
<td>MDD Period</td>
<td>110</td>
<td>6</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Monthly Turnover (%)</td>
<td></td>
<td>23.5</td>
<td>77.1</td>
<td>238.1</td>
</tr>
<tr>
<td>After 2/20 Fees Ret (%)</td>
<td>10.75</td>
<td>7.62</td>
<td>11.08</td>
<td></td>
</tr>
<tr>
<td>After 2/20 Fees SR (%)</td>
<td>0.74</td>
<td>0.61</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Correlation Matrix</td>
<td></td>
<td>$M_{12}^1$</td>
<td>$W_8^1$</td>
<td>$D_{15}^1$</td>
</tr>
<tr>
<td></td>
<td>$M_{12}^1$</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$W_8^1$</td>
<td>0.42</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$D_{15}^1$</td>
<td>0.28</td>
<td>0.55</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Trend-Following Historical Performance (F2)

Panel A: Cumulative Returns (starting at $100)

Panel B: 36-month Rolling Sharpe Ratio

Nick Baltas (UBS, Imperial College, QMUL)
### Comparison of FTB strategies to BarclayHedge CTA Indices over time (T5)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$M^1_{12}$</td>
<td>11.4</td>
<td>19.3</td>
<td>14.7</td>
<td>10.2</td>
<td>9.5</td>
<td>11.8</td>
<td>27.8</td>
<td>20.0</td>
<td>33.6</td>
<td>31.9</td>
<td>26.7</td>
<td>13.0</td>
</tr>
<tr>
<td>$W^1_8$</td>
<td>19.3</td>
<td>25.8</td>
<td>-4.0</td>
<td>23.8</td>
<td>7.2</td>
<td>18.5</td>
<td>1.4</td>
<td>30.9</td>
<td>20.1</td>
<td>10.8</td>
<td>43.1</td>
<td>3.5</td>
</tr>
<tr>
<td>$D^1_{15}$</td>
<td>29.2</td>
<td>38.0</td>
<td>16.8</td>
<td>27.9</td>
<td>15.9</td>
<td>28.9</td>
<td>18.9</td>
<td>38.7</td>
<td>55.5</td>
<td>30.3</td>
<td>67.6</td>
<td>23.7</td>
</tr>
<tr>
<td>CTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>63.7</td>
<td>23.9</td>
<td>16.7</td>
<td>23.8</td>
</tr>
<tr>
<td>Syst.CTA</td>
<td></td>
<td>63.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$M^1_{12}$</td>
<td>22.7</td>
<td>7.0</td>
<td>2.0</td>
<td>15.5</td>
<td>29.8</td>
<td>-2.1</td>
<td>14.4</td>
<td>17.8</td>
<td>36.1</td>
<td>26.4</td>
<td>13.8</td>
<td>8.5</td>
</tr>
<tr>
<td>$W^1_8$</td>
<td>6.4</td>
<td>37.5</td>
<td>7.2</td>
<td>14.9</td>
<td>17.9</td>
<td>-1.8</td>
<td>17.3</td>
<td>8.3</td>
<td>11.2</td>
<td>24.6</td>
<td>-5.1</td>
<td>4.4</td>
</tr>
<tr>
<td>$D^1_{15}$</td>
<td>22.6</td>
<td>34.4</td>
<td>11.6</td>
<td>20.2</td>
<td>18.1</td>
<td>11.9</td>
<td>14.3</td>
<td>6.1</td>
<td>27.1</td>
<td>34.1</td>
<td>-2.1</td>
<td>-5.6</td>
</tr>
<tr>
<td>CTA</td>
<td>1.8</td>
<td>21.0</td>
<td>3.7</td>
<td>-0.9</td>
<td>10.4</td>
<td>-0.7</td>
<td>13.6</td>
<td>9.1</td>
<td>10.9</td>
<td>7.0</td>
<td>-1.2</td>
<td>7.9</td>
</tr>
<tr>
<td>Syst.CTA</td>
<td>1.2</td>
<td>34.6</td>
<td>13.4</td>
<td>3.3</td>
<td>8.2</td>
<td>-3.2</td>
<td>15.3</td>
<td>11.56</td>
<td>12.8</td>
<td>8.1</td>
<td>-3.7</td>
<td>9.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$M^1_{12}$</td>
<td>24.1</td>
<td>37.8</td>
<td>20.4</td>
<td>19.5</td>
<td>14.6</td>
<td>10.7</td>
<td>12.8</td>
<td>30.3</td>
<td>-6.4</td>
<td>9.2</td>
<td>-3.3</td>
<td>2.1</td>
</tr>
<tr>
<td>$W^1_8$</td>
<td>23.6</td>
<td>14.0</td>
<td>12.1</td>
<td>14.1</td>
<td>9.3</td>
<td>4.0</td>
<td>-8.6</td>
<td>47.9</td>
<td>-6.6</td>
<td>16.4</td>
<td>-0.0</td>
<td>-3.6</td>
</tr>
<tr>
<td>$D^1_{15}$</td>
<td>18.9</td>
<td>11.0</td>
<td>2.6</td>
<td>-2.5</td>
<td>8.0</td>
<td>-2.8</td>
<td>7.5</td>
<td>30.8</td>
<td>-10.9</td>
<td>17.3</td>
<td>-3.7</td>
<td>-1.1</td>
</tr>
<tr>
<td>CTA</td>
<td>0.84</td>
<td>12.4</td>
<td>8.7</td>
<td>3.3</td>
<td>1.7</td>
<td>3.5</td>
<td>7.6</td>
<td>14.1</td>
<td>-0.1</td>
<td>7.1</td>
<td>-3.1</td>
<td>-1.7</td>
</tr>
<tr>
<td>Syst.CTA</td>
<td>3.00</td>
<td>12.1</td>
<td>8.7</td>
<td>0.5</td>
<td>1.0</td>
<td>2.1</td>
<td>8.7</td>
<td>18.2</td>
<td>-3.4</td>
<td>7.8</td>
<td>-3.8</td>
<td>-3.2</td>
</tr>
</tbody>
</table>

Our momentum strategies exclude transaction costs and fees (…)

---

Nick Baltas (UBS, Imperial College, QMUL)
**CTA Returns Largely Explained by Time-Series Momentum (T6)**

Jan.1994 - Feb.2013:

<table>
<thead>
<tr>
<th>Dependent Variable: BarclayHedge Systematic CTA Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) FH7</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>ann. alpha (%)</td>
</tr>
<tr>
<td>S&amp;500</td>
</tr>
<tr>
<td>SCMLC</td>
</tr>
<tr>
<td>TCM 10Y</td>
</tr>
<tr>
<td>BAA Spread</td>
</tr>
<tr>
<td>PTF Bonds</td>
</tr>
<tr>
<td>PTF FX</td>
</tr>
<tr>
<td>PTF Cmdty</td>
</tr>
<tr>
<td>PTF IR</td>
</tr>
<tr>
<td>PTF Stock</td>
</tr>
<tr>
<td>$M_{12}^1$</td>
</tr>
<tr>
<td>$W_8^1$</td>
</tr>
<tr>
<td>$D_{15}^1$</td>
</tr>
<tr>
<td>adj. $R^2$ (%)</td>
</tr>
</tbody>
</table>
The evidence that CTAs follow time-series momentum strategies appears overwhelming.

Results are robust to other indices (BH-CTA index, Newedge CTA index; paper Appendix).

Given that CTA industry has substantially grown recently, are there any capacity constraints for the time-series momentum strategies?
The evidence that CTAs follow time-series momentum strategies appears overwhelming.

Results are robust to other indices (BH-CTA index, Newedge CTA index; paper Appendix).

Given that CTA industry has substantially grown recently, are there any capacity constraints for the time-series momentum strategies?
Rolling Model Fit - further back in time...

- The BarclayHedge Systematic CTA index is available from 1987.
- The FTB strategies are available from 1977.
Capacity Constraints and Trend-following Strategies

We use two different methodologies:

1. CTA Flows and Trend-Following Strategy Performance
   - Performance-flow regressions
     \[ \text{FuF}_j(t) = \frac{\text{AUM}_j(t) - \text{AUM}_j(t-1) \cdot (1 + R_j(t))}{\text{AUM}_j(t-1)} \]
   - Aggregate flow of capital: AUM-weighted average of individual fund flows.
   - Additional hypothesis: inflows into CTAs may not immediately be deployed as margin for future contracts, but instead funds may remain uninvested.
   \[ \rightarrow \] Interaction term between flows and CFTC-reported aggregate open interest.
   - Open interest ↑ is an indication that market participants increase their positions.

2. Open Interest and Hypothetical Implementation of Trend-Following Strategies
   - Asset-level thought experiment.
   - What would happen if the entire AUM of the systematic CTA industry were invested in our monthly momentum strategy?
   - Compare the number of futures positions that have to be opened vs. CFTC-reported contemporaneous open interest.
Capacity Constraints and Trend-following Strategies

We use two different methodologies:

1. CTA Flows and Trend-Following Strategy Performance
   - Performance-flow regressions
     \[
     \text{FuF}_j(t) = \frac{\text{AUM}_j(t) - \text{AUM}_j(t-1) \cdot (1 + R_j(t))}{\text{AUM}_j(t-1)}
     \]
   - Aggregate flow of capital: AUM-weighted average of individual fund flows.
   - *Additional hypothesis*: inflows into CTAs may not immediately be deployed as margin for future contracts, but instead funds may remain uninvested.
   - Interaction term between flows and CFTC-reported aggregate open interest.
   - Open interest ↑ is an indication that market participants increase their positions.

2. Open Interest and Hypothetical Implementation of Trend-Following Strategies
   - Asset-level thought experiment.
   - What would happen if the entire AUM of the systematic CTA industry were invested in our monthly momentum strategy?
   - Compare the number of futures positions that have to be opened vs. CFTC-reported contemporaneous open interest.
Capacity Constraints and Trend-following Strategies

We use two different methodologies:

1. CTA Flows and Trend-Following Strategy Performance
   - Performance-flow regressions
       \[
       \text{FuF}_j(t) = \frac{\text{AUM}_j(t) - \text{AUM}_j(t-1) \cdot (1 + R_j(t))}{\text{AUM}_j(t-1)}
       \]
     - Aggregate flow of capital: AUM-weighted average of individual fund flows.
     - Additional hypothesis: inflows into CTAs may not immediately be deployed as margin for future contracts, but instead funds may remain uninvested.
     - Interaction term between flows and CFTC-reported aggregate open interest.
     - Open interest ↑ is an indication that market participants increase their positions.

2. Open Interest and Hypothetical Implementation of Trend-Following Strategies
   - Asset-level thought experiment.
   - What would happen if the entire AUM of the systematic CTA industry were invested in our monthly momentum strategy?
   - Compare the number of futures positions that have to be opened vs. CFTC-reported contemporaneous open interest.
Capacity Constraints and Trend-following Strategies

We use two different methodologies:

1. CTA Flows and Trend-Following Strategy Performance
   - Performance-flow regressions
     \[ FuF_j(t) = \frac{AUM_j(t) - AUM_j(t-1) \cdot (1 + R_j(t))}{AUM_j(t-1)} \]
   - Aggregate flow of capital: AUM-weighted average of individual fund flows.
   - Additional hypothesis: inflows into CTAs may not immediately be deployed as margin for future contracts, but instead funds may remain uninvested.
     → Interaction term between flows and CFTC-reported aggregate open interest.
   - Open interest ↑ is an indication that market participants increase their positions.

2. Open Interest and Hypothetical Implementation of Trend-Following Strategies
   - Asset-level thought experiment.
   - What would happen if the entire AUM of the systematic CTA industry were invested in our monthly momentum strategy?
   - Compare the number of futures positions that have to be opened vs. CFTC-reported contemporaneous open interest.
Capacity Constraints and Trend-following Strategies

We use two different methodologies:

1. CTA Flows and Trend-Following Strategy Performance
   - Performance-flow regressions
     \[
     \text{FuF}_j(t) = \frac{\text{AUM}_j(t) - \text{AUM}_j(t - 1) \cdot (1 + R_j(t))}{\text{AUM}_j(t - 1)}
     \]
   - Aggregate flow of capital: AUM-weighted average of individual fund flows.
   - Additional hypothesis: inflows into CTAs may not immediately be deployed as margin for future contracts, but instead funds may remain uninvested.
     → Interaction term between flows and CFTC-reported aggregate open interest.
   - Open interest ↑ is an indication that market participants increase their positions.

2. Open Interest and Hypothetical Implementation of Trend-Following Strategies
   - Asset-level thought experiment.
   - What would happen if the entire AUM of the systematic CTA industry were invested in our monthly momentum strategy?
   - Compare the number of futures positions that have to be opened vs. CFTC-reported contemporaneous open interest.
Capacity Constraints and Trend-following Strategies

We use two different methodologies:

1. CTA Flows and Trend-Following Strategy Performance
   - Performance-flow regressions
     \[ FuF_j(t) = \frac{AUM_j(t) - AUM_j(t-1) \cdot (1 + R_j(t))}{AUM_j(t-1)} \]
   - **Aggregate flow of capital**: AUM-weighted average of individual fund flows.
   - **Additional hypothesis**: inflows into CTAs may not immediately be deployed as margin for future contracts, but instead funds may remain uninvested.
   - Interaction term between flows and CFTC-reported aggregate open interest.
   - Open interest ↑ is an indication that market participants increase their positions.

2. Open Interest and Hypothetical Implementation of Trend-Following Strategies
   - Asset-level thought experiment.
   - What would happen if the entire AUM of the systematic CTA industry were invested in our monthly momentum strategy?
   - Compare the number of futures positions that have to be opened vs. CFTC-reported contemporaneous open interest.
Capacity Constraints and Trend-following Strategies

We use two different methodologies:

1. **CTA Flows and Trend-Following Strategy Performance**
   - **Performance-flow regressions**
     \[
     FuF_j(t) = \frac{AUM_j(t) - AUM_j(t-1) \cdot (1 + R_j(t))}{AUM_j(t-1)}
     \]
   - **Aggregate flow of capital**: AUM-weighted average of individual fund flows.
   - **Additional hypothesis**: inflows into CTAs may not immediately be deployed as margin for future contracts, but instead funds may remain uninvested.
   - → Interaction term between flows and CFTC-reported aggregate open interest.
   - Open interest ↑ is an indication that market participants increase their positions.

2. **Open Interest and Hypothetical Implementation of Trend-Following Strategies**
   - **Asset-level thought experiment.**
   - What would happen if the entire AUM of the systematic CTA industry were invested in our monthly momentum strategy?
   - Compare the number of futures positions that have to be opened vs. CFTC-reported contemporaneous open interest.
Capacity Constraints and Trend-following Strategies

We use two different methodologies:

1. CTA Flows and Trend-Following Strategy Performance
   - Performance-flow regressions
     \[ FuF_j(t) = \frac{AUM_j(t) - AUM_j(t-1) \cdot (1 + R_j(t))}{AUM_j(t-1)} \]
   - Aggregate flow of capital: AUM-weighted average of individual fund flows.
   - Additional hypothesis: inflows into CTAs may not immediately be deployed as margin for future contracts, but instead funds may remain uninvested.
     → Interaction term between flows and CFTC-reported aggregate open interest.
   - Open interest ↑ is an indication that market participants increase their positions.

2. Open Interest and Hypothetical Implementation of Trend-Following Strategies
   - Asset-level thought experiment.
     - What would happen if the entire AUM of the systematic CTA industry were invested in our monthly momentum strategy?
     - Compare the number of futures positions that have to be opened vs. CFTC-reported contemporaneous open interest.
Capacity Constraints and Trend-following Strategies

We use two different methodologies:

1. **CTA Flows and Trend-Following Strategy Performance**
   - Performance-flow regressions
     \[ \text{FuF}_j(t) = \frac{\text{AUM}_j(t) - \text{AUM}_j(t - 1) \cdot (1 + R_j(t))}{\text{AUM}_j(t - 1)} \]
   - Aggregate flow of capital: AUM-weighted average of individual fund flows.
   - Additional hypothesis: inflows into CTAs may not immediately be deployed as margin for future contracts, but instead funds may remain uninvested.
   - Interaction term between flows and CFTC-reported aggregate open interest.
   - Open interest ↑ is an indication that market participants increase their positions.

2. **Open Interest and Hypothetical Implementation of Trend-Following Strategies**
   - Asset-level thought experiment.
   - What would happen if the entire AUM of the systematic CTA industry were invested in our monthly momentum strategy?
   - Compare the number of futures positions that have to be opened vs. CFTC-reported contemporaneous open interest.
Capacity Constraints and Trend-following Strategies

We use two different methodologies:

1. CTA Flows and Trend-Following Strategy Performance

   ▶ Performance-flow regressions
   
   \[
   FuF_j(t) = \frac{AUM_j(t) - AUM_j(t-1) \cdot (1 + R_j(t))}{AUM_j(t-1)}
   \]

   ▶ Aggregate flow of capital: AUM-weighted average of individual fund flows.
   ▶ Additional hypothesis: inflows into CTAs may not immediately be deployed as margin for future contracts, but instead funds may remain uninvested.

   → Interaction term between flows and CFTC-reported aggregate open interest.

   ▶ Open interest ↑ is an indication that market participants increase their positions.

2. Open Interest and Hypothetical Implementation of Trend-Following Strategies

   ▶ Asset-level thought experiment.
   ▶ What would happen if the entire AUM of the systematic CTA industry were invested in our monthly momentum strategy?
   ▶ Compare the number of futures positions that have to be opened vs. CFTC-reported contemporaneous open interest.
CTA Flows and Trend-Following Strategy Performance (T7)

- Performance-flow regression (with standardised fund flow variable):

\[
R^K_J(t) = \text{const.} + \phi \sum_{\tau = t - 12}^{t-1} \text{FuF}(\tau) + \sum_{i=1}^{5} \beta_i X_i(t) + \epsilon(t)
\]

<table>
<thead>
<tr>
<th></th>
<th>(i) All Contracts</th>
<th>(ii) All excl. Commodities</th>
<th>(iii) Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M^1_{12})</td>
<td>(W^1_8)</td>
<td>(D^1_{15})</td>
</tr>
<tr>
<td>const.</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(6.87)</td>
<td>(9.32)</td>
<td>(6.84)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>-0.00</td>
<td>-0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(-0.72)</td>
<td>(-1.52)</td>
<td>(-0.01)</td>
</tr>
<tr>
<td>(\beta_{MSCI})</td>
<td>0.11</td>
<td>-0.14</td>
<td>-0.19</td>
</tr>
<tr>
<td></td>
<td>(0.92)</td>
<td>(-1.82)</td>
<td>(-2.19)</td>
</tr>
<tr>
<td>(\beta_{SMB})</td>
<td>0.05</td>
<td>-0.13</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>(0.74)</td>
<td>(-1.85)</td>
<td>(-0.92)</td>
</tr>
<tr>
<td>(\beta_{HML})</td>
<td>0.08</td>
<td>-0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(0.99)</td>
<td>(-0.31)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>(\beta_{GSCI})</td>
<td>-0.04</td>
<td>-0.01</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(-0.58)</td>
<td>(-0.20)</td>
<td>(-0.41)</td>
</tr>
<tr>
<td>(\beta_{UMD})</td>
<td>0.36</td>
<td>0.09</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>(5.82)</td>
<td>(2.22)</td>
<td>(-0.99)</td>
</tr>
<tr>
<td>adj. (R^2) (%)</td>
<td>12.84</td>
<td>5.43</td>
<td>3.54</td>
</tr>
</tbody>
</table>

- Relationship is statistically and economically insignificant and also time-varying (...).
CTA Flows and Trend-Following Strategy Performance (T7)

- Performance-flow regression (with standardised fund flow variable):

\[ R^K_J(t) = \text{const.} + \phi \sum_{\tau=t-12}^{t-1} \text{FuF}(\tau) + \sum_{i=1}^{5} \beta_i X_i(t) + \epsilon(t) \]

<table>
<thead>
<tr>
<th></th>
<th>(i) All Contracts</th>
<th>(ii) All excl. Commodities</th>
<th>(iii) Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td>( M_{12} )</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>( W_8^1 )</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>( D_{15}^1 )</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>( \phi )</td>
<td>(-0.72)</td>
<td>(-1.52)</td>
<td>(-0.01)</td>
</tr>
<tr>
<td>( \beta_{MSCI} )</td>
<td>0.11</td>
<td>0.20</td>
<td>-0.01</td>
</tr>
<tr>
<td>( \beta_{SMB} )</td>
<td>0.05</td>
<td>-0.08</td>
<td>-0.17</td>
</tr>
<tr>
<td>( \beta_{HML} )</td>
<td>0.08</td>
<td>-0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>( \beta_{GSCI} )</td>
<td>-0.04</td>
<td>-0.04</td>
<td>-0.02</td>
</tr>
<tr>
<td>( \beta_{UMD} )</td>
<td>0.36</td>
<td>0.51</td>
<td>0.12</td>
</tr>
<tr>
<td>adj. ( R^2 ) (%)</td>
<td>12.84</td>
<td>13.18</td>
<td>0.93</td>
</tr>
</tbody>
</table>

- Relationship is statistically and economically insignificant and also time-varying (...).
CTA Flows and Trend-Following Strategy Performance (T7)

- Performance-flow regression (with standardised fund flow variable):

\[
R^K_J(t) = \text{const.} + \phi \sum_{\tau=t-12}^{t-1} \text{FuF}(\tau) + \sum_{i=1}^{5} \beta_i X_i(t) + \epsilon(t)
\]

<table>
<thead>
<tr>
<th></th>
<th>(i) All Contracts</th>
<th>(ii) All excl. Commodities</th>
<th>(iii) Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_1^{12})</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>(W_8^{1})</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>(D_{15}^{1})</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>(\phi)</td>
<td>-0.00</td>
<td>-0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(-0.72)</td>
<td>(-1.52)</td>
<td>(-0.01)</td>
</tr>
<tr>
<td>(\beta_{MSCI})</td>
<td>0.11</td>
<td>-0.14</td>
<td>-0.19</td>
</tr>
<tr>
<td></td>
<td>(0.92)</td>
<td>(-1.82)</td>
<td>(-2.19)</td>
</tr>
<tr>
<td>(\beta_{SMB})</td>
<td>0.05</td>
<td>-0.13</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>(0.74)</td>
<td>(-1.85)</td>
<td>(-0.92)</td>
</tr>
<tr>
<td>(\beta_{HML})</td>
<td>0.08</td>
<td>-0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(0.99)</td>
<td>(-0.31)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>(\beta_{GSCI})</td>
<td>-0.04</td>
<td>-0.01</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(-0.58)</td>
<td>(-0.20)</td>
<td>(-0.41)</td>
</tr>
<tr>
<td>(\beta_{UMD})</td>
<td>0.36</td>
<td>0.09</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>(5.82)</td>
<td>(2.22)</td>
<td>(-0.99)</td>
</tr>
<tr>
<td>adj. (R^2) (%)</td>
<td>12.84</td>
<td>5.43</td>
<td>3.54</td>
</tr>
</tbody>
</table>

\(\text{adj. } R^2\) is statistically and economically insignificant and also time-varying (...).
CTA Flows and Trend-Following Strategy Performance (T7)

- Performance-flow regression (with standardised fund flow variable):

\[ R^K_j(t) = \text{const.} + \phi \sum_{\tau=t-12}^{t-1} \text{FuF}^\tau + \sum_{i=1}^{5} \beta_i X_i(t) + \epsilon(t) \]

<table>
<thead>
<tr>
<th>(i) All Contracts</th>
<th>(ii) All excl. Commodities</th>
<th>(iii) Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{12})</td>
<td>(W^1_8)</td>
<td>(D^1_{15})</td>
</tr>
<tr>
<td>(\text{const.})</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>(\phi)</td>
<td>-0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td>(\beta_{MSCI})</td>
<td>0.11</td>
<td>-0.14</td>
</tr>
<tr>
<td>(\beta_{SMB})</td>
<td>0.05</td>
<td>-0.13</td>
</tr>
<tr>
<td>(\beta_{HML})</td>
<td>0.08</td>
<td>-0.02</td>
</tr>
<tr>
<td>(\beta_{GSCI})</td>
<td>-0.04</td>
<td>-0.01</td>
</tr>
<tr>
<td>(\beta_{UMD})</td>
<td>0.36</td>
<td>0.09</td>
</tr>
<tr>
<td>(\text{adj. } R^2) (%)</td>
<td>12.84</td>
<td>5.43</td>
</tr>
</tbody>
</table>

\(R^2\) is statistically and economically insignificant and also time-varying (...).
CTA Flows and Trend-Following Strategy Performance (T7)

- Performance-flow regression (with standardised fund flow variable):

\[
R^K_J(t) = \text{const.} + \phi \sum_{\tau=t-12}^{t-1} \text{FuF} + \sum_{i=1}^{5} \beta_i X_i(t) + \epsilon(t)
\]

<table>
<thead>
<tr>
<th></th>
<th>(i) All Contracts</th>
<th>(ii) All excl. Commodities</th>
<th>(iii) Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M^1_{12})</td>
<td>(W^1_8)</td>
<td>(D^1_{15})</td>
</tr>
<tr>
<td>\text{const.}</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(6.87)</td>
<td>(9.32)</td>
<td>(6.84)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>-0.00</td>
<td>-0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(-0.72)</td>
<td>(-1.52)</td>
<td>(-0.01)</td>
</tr>
<tr>
<td>(\beta_{\text{MSCI}})</td>
<td>0.11</td>
<td>-0.14</td>
<td>-0.19</td>
</tr>
<tr>
<td></td>
<td>(0.92)</td>
<td>(-1.82)</td>
<td>(-2.19)</td>
</tr>
<tr>
<td>(\beta_{\text{SMB}})</td>
<td>0.05</td>
<td>-0.13</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>(0.74)</td>
<td>(-1.85)</td>
<td>(-0.92)</td>
</tr>
<tr>
<td>(\beta_{\text{HML}})</td>
<td>0.08</td>
<td>-0.02</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(0.99)</td>
<td>(-0.31)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>(\beta_{\text{GSCI}})</td>
<td>-0.04</td>
<td>-0.01</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(-0.58)</td>
<td>(-0.20)</td>
<td>(-0.41)</td>
</tr>
<tr>
<td>(\beta_{\text{UMD}})</td>
<td>0.36</td>
<td>0.09</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>(5.82)</td>
<td>(2.22)</td>
<td>(-0.99)</td>
</tr>
</tbody>
</table>

- Relationship is statistically and economically insignificant and also time-varying (...).
## CTA Flows and Trend-Following Strategy Performance (T8)

- Interaction term between flows and sign of changes in aggregate open interest:

\[
R^K_J(t) = \text{const.} + \phi^+ \sum_{\tau=t-12}^{t-1} \text{FuF}(\tau) \cdot I_{\Delta[\text{OI}(t)] > 0} + \phi^- \sum_{\tau=t-12}^{t-1} \text{FuF}(\tau) \cdot I_{\Delta[\text{OI}(t)] < 0} + \sum_{i=1}^{5} \beta_i X_i(t) + \epsilon(t)
\]

### Table

<table>
<thead>
<tr>
<th></th>
<th>(i) All Contracts</th>
<th>(ii) All excl. Commodities</th>
<th>(iii) Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M^1_{12})</td>
<td>(W^1_{8})</td>
<td>(D^1_{15})</td>
</tr>
<tr>
<td><strong>const.</strong></td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(5.80)</td>
<td>(5.16)</td>
<td>(6.36)</td>
</tr>
<tr>
<td>(\phi^+)</td>
<td>0.00</td>
<td>-0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(-1.10)</td>
<td>(-0.34)</td>
</tr>
<tr>
<td>(\phi^-)</td>
<td>-0.00</td>
<td>-0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(-0.47)</td>
<td>(-1.81)</td>
<td>(-1.03)</td>
</tr>
<tr>
<td>(\beta_{MSCI})</td>
<td>0.01</td>
<td>-0.02</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(-0.73)</td>
<td>(0.58)</td>
</tr>
<tr>
<td>(\beta_{SMB})</td>
<td>0.03</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.55)</td>
<td>(-0.36)</td>
<td>(-0.49)</td>
</tr>
<tr>
<td>(\beta_{HML})</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(0.36)</td>
<td>(0.73)</td>
<td>(-0.71)</td>
</tr>
<tr>
<td>(\beta_{GSCI})</td>
<td>-0.00</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(-0.08)</td>
<td>(-0.39)</td>
<td>(-0.95)</td>
</tr>
<tr>
<td>(\beta_{UMD})</td>
<td>0.23</td>
<td>-0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(4.65)</td>
<td>(-0.08)</td>
<td>(-1.74)</td>
</tr>
<tr>
<td><strong>adj. (R^2) (%)</strong></td>
<td>7.77</td>
<td>-0.33</td>
<td>0.60</td>
</tr>
</tbody>
</table>
CTA Flows and Trend-Following Strategy Performance (T8)

- Interaction term between flows and sign of changes in aggregate open interest:

\[ R^K_J(t) = \text{const.} + \phi^+ \sum_{\tau=t-12}^{t-1} \text{FuF}(\tau) \cdot I[\Delta[\text{OI}(t)] > 0] + \phi^- \sum_{\tau=t-12}^{t-1} \text{FuF}(\tau) \cdot I[\Delta[\text{OI}(t)] < 0] + \sum_{i=1}^{5} \beta_i X_i(t) + \epsilon(t) \]

<table>
<thead>
<tr>
<th></th>
<th>(i) All Contracts</th>
<th>(ii) All excl. Commodities</th>
<th>(iii) Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>( M^1_{12} )</td>
<td>( W^1_8 )</td>
<td>( D^1_{15} )</td>
</tr>
<tr>
<td>const.</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(5.80)</td>
<td>(5.16)</td>
<td>(6.36)</td>
</tr>
<tr>
<td>( \phi^+ )</td>
<td>0.00</td>
<td>-0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(-1.10)</td>
<td>(-0.34)</td>
</tr>
<tr>
<td>( \phi^- )</td>
<td>-0.00</td>
<td>-0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(-0.47)</td>
<td>(-1.81)</td>
<td>(-1.03)</td>
</tr>
<tr>
<td>( \beta_{MSCI} )</td>
<td>0.01</td>
<td>-0.02</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(-0.73)</td>
<td>(0.58)</td>
</tr>
<tr>
<td>( \beta_{SMB} )</td>
<td>0.03</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.55)</td>
<td>(-0.36)</td>
<td>(-0.49)</td>
</tr>
<tr>
<td>( \beta_{HML} )</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(0.36)</td>
<td>(0.73)</td>
<td>(-0.71)</td>
</tr>
<tr>
<td>( \beta_{GSCI} )</td>
<td>-0.00</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(-0.08)</td>
<td>(-0.39)</td>
<td>(-0.95)</td>
</tr>
<tr>
<td>( \beta_{UMD} )</td>
<td>0.23</td>
<td>-0.00</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td>(4.65)</td>
<td>(-0.08)</td>
<td>(-1.74)</td>
</tr>
<tr>
<td>adj. ( R^2 ) (%)</td>
<td>7.77</td>
<td>-0.33</td>
<td>0.60</td>
</tr>
</tbody>
</table>
CTA Flows and Trend-Following Strategy Performance (T8)

- Interaction term between flows and sign of changes in aggregate open interest:

\[ R^K_J(t) = \text{const.} + \phi^+ \sum_{\tau=t-12}^{t-1} FuF(\tau) \cdot \mathbb{I}_{\Delta[OI(t)]>0} + \phi^- \sum_{\tau=t-12}^{t-1} FuF(\tau) \cdot \mathbb{I}_{\Delta[OI(t)]<0} + \sum_{i=1}^{5} \beta_i X_i(t) + \epsilon(t) \]

<table>
<thead>
<tr>
<th></th>
<th>(i) All Contracts</th>
<th>(ii) All excl. Commodities</th>
<th>(iii) Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{12})</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>(W^1_8)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(D^1_{15})</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(\phi^+)</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td></td>
<td>(0.35)</td>
<td>(0.28)</td>
<td>(-0.17)</td>
</tr>
<tr>
<td>(\phi^-)</td>
<td>-0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(-0.47)</td>
<td>(0.23)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>(\beta_{MSCI})</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(-0.73)</td>
<td>(0.03)</td>
</tr>
<tr>
<td>(\beta_{SMB})</td>
<td>0.03</td>
<td>-0.01</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.55)</td>
<td>(-0.36)</td>
<td>(1.16)</td>
</tr>
<tr>
<td>(\beta_{HML})</td>
<td>0.02</td>
<td>0.02</td>
<td>-0.01</td>
</tr>
<tr>
<td></td>
<td>(0.36)</td>
<td>(0.73)</td>
<td>(-0.11)</td>
</tr>
<tr>
<td>(\beta_{GSCI})</td>
<td>-0.00</td>
<td>-0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(-0.08)</td>
<td>(-0.39)</td>
<td>(0.21)</td>
</tr>
<tr>
<td>(\beta_{UMD})</td>
<td>0.23</td>
<td>-0.00</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(4.65)</td>
<td>(-0.08)</td>
<td>(2.92)</td>
</tr>
<tr>
<td>adj. (R^2) (%)</td>
<td>7.77</td>
<td>-0.33</td>
<td>1.72</td>
</tr>
</tbody>
</table>
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Asset-level thought experiment:

- **Scenario**: Entire systematic CTA AUM invested in Time-Series Momentum Strategy. 
  Realistic assumptions:
  - Margin-to-notional ratios for futures contracts:
    - 4% for currency futures
    - 10% for equity futures
    - 3% for bond futures
    - 10% for commodity futures
  - Margin-to-equity ratio for CTAs: 10% (in practice, in the range 8% - 12%)

- **Objective**: Compare the number of contracts per asset that would be needed with the contemporaneous CFTC-reported Open Interest:
  - Calculate the average number of months that the number of contracts \( n_{i}^{CTA} \) per asset [see Appendix for details] exceed the respective contemporaneous CFTC-reported open interest \( OI_{i}^{CTA}(t) \):
    \[
    \frac{1}{M} \sum_{t=1}^{M} \mathbb{I}\{n_{i}^{CTA}(t) > OI_{i}^{CTA}(t)\} \text{ for each asset } i, 
    \]
  - where \( M \) is the number of months in the evaluation period.
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Asset-level thought experiment:

- **Scenario:** Entire systematic CTA AUM invested in Time-Series Momentum Strategy.
  
  **Realistic assumptions:**
  
  ▶ Margin-to-notional ratios for futures contracts:
    - 4% for currency futures
    - 10% for equity futures
    - 3% for bond futures
    - 10% for commodity futures
  
  ▶ Margin-to-equity ratio for CTAs: 10% (in practice, in the range 8% - 12%)
  
  **Objective:** Compare the number of contracts per asset that would be needed with the contemporaneous CFTC-reported Open Interest:
    
    ▶ Calculate the average number of months that the number of contracts $n_{i}^{CTA}$ per asset [see Appendix for details] exceed the respective contemporaneous CFTC-reported open interest $OI_{i}^{CTA}(t)$:
      
      $$\frac{1}{M} \sum_{t=1}^{M} \mathbb{I}\left\{ n_{i}^{CTA}(t) > OI_{i}^{CTA}(t) \right\} \text{ for each asset } i,$$
      
      where $M$ is the number of months in the evaluation period.
  
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Asset-level thought experiment:

- **Scenario:** Entire systematic CTA AUM invested in Time-Series Momentum Strategy.
- **Realistic assumptions:**
  - Margin-to-notional ratios for futures contracts:
    - 4% for currency futures
    - 10% for equity futures
    - 3% for bond futures
    - 10% for commodity futures
  - Margin-to-equity ratio for CTAs: 10% (in practice, in the range 8% - 12%)
- **Objective:** Compare the number of contracts per asset that would be needed with the contemporaneous CFTC-reported Open Interest:
  - Calculate the average number of months that the number of contracts \( n^{CTA}_i(t) \) per asset [see Appendix for details] exceed the respective contemporaneous CFTC-reported open interest \( OI^{CTA}_i(t) \):

\[
\frac{1}{M} \sum_{t=1}^{M} \mathbb{I}\{n^{CTA}_i(t) > OI^{CTA}_i(t)\} \quad \text{for each asset } i,
\]

where \( M \) is the number of months in the evaluation period.
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Asset-level thought experiment:

- **Scenario:** Entire systematic CTA AUM invested in Time-Series Momentum Strategy.
  - **Realistic assumptions:**
    - **Margin-to-notional ratios** for futures contracts:
      - 4% for currency futures
      - 10% for equity futures
      - 3% for bond futures
      - 10% for commodity futures
    - **Margin-to-equity ratio** for CTAs: 10% (in practice, in the range 8% - 12%)

- **Objective:** Compare the number of contracts per asset that would be needed with the contemporaneous CFTC-reported Open Interest:
  - Calculate the average number of months that the number of contracts $n^{CTA}_i$ per asset [see Appendix for details] exceed the respective contemporaneous CFTC-reported open interest $OI^{CTA}_i(t)$:
    $$\frac{1}{M} \sum_{t=1}^{M} \mathbb{I}\{n^{CTA}_i(t) > OI^{CTA}_i(t)\}$$
    for each asset $i$, where $M$ is the number of months in the evaluation period.
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Asset-level thought experiment:

- **Scenario:** Entire systematic CTA AUM invested in Time-Series Momentum Strategy.
  
  **Realistic assumptions:**
  
  - **Margin-to-notional ratios** for futures contracts:
    - 4% for currency futures
    - 10% for equity futures
    - 3% for bond futures
    - 10% for commodity futures
  
  - **Margin-to-equity ratio** for CTAs: 10% (in practice, in the range 8% - 12%)

- **Objective:** Compare the number of contracts per asset that would be needed with the contemporaneous CFTC-reported Open Interest:
  
  - Calculate the average number of months that the number of contracts \( n_i^{CTA} \) per asset [see Appendix for details] exceed the respective contemporaneous CFTC-reported open interest \( OI_i^{CTA} (t) \):
    
    \[
    \frac{1}{M} \sum_{t=1}^{M} \mathbb{I}\{n_i^{CTA}(t) > OI_i^{CTA}(t)\} \quad \text{for each asset } i,
    \]

    where \( M \) is the number of months in the evaluation period.

Open Interest & Hypothetical Implementation of Trend-Following Strategies

Asset-level thought experiment:

- **Scenario:** Entire systematic CTA AUM invested in Time-Series Momentum Strategy.
  - Realistic assumptions:
    - Margin-to-notional ratios for futures contracts:
      - 4% for currency futures
      - 10% for equity futures
      - 3% for bond futures
      - 10% for commodity futures
    - Margin-to-equity ratio for CTAs: 10% (in practice, in the range 8% - 12%)

- **Objective:** Compare the number of contracts per asset that would be needed with the contemporaneous CFTC-reported Open Interest:
  - Calculate the average number of months that the number of contracts $n_{CTA}^i(t)$ per asset [see Appendix for details] exceed the respective contemporaneous CFTC-reported open interest $OI_{CTA}^i(t)$:
    \[
    \frac{1}{M} \sum_{t=1}^{M} \mathbb{I}\{n_{CTA}^i(t) > OI_{CTA}^i(t)\} \text{ for each asset } i, \]
  - where $M$ is the number of months in the evaluation period.
Asset-level thought experiment:

- **Scenario:** Entire systematic CTA AUM invested in Time-Series Momentum Strategy.

  Realistic assumptions:
  - Margin-to-notional ratios for futures contracts:
    - 4% for currency futures
    - 10% for equity futures
    - 3% for bond futures
    - 10% for commodity futures
  - Margin-to-equity ratio for CTAs: 10% (in practice, in the range 8% - 12%)

- **Objective:** Compare the number of contracts per asset that would be needed with the contemporaneous CFTC-reported Open Interest:
  - Calculate the average number of months that the number of contracts $n_{i}^{CTA}$ per asset [see Appendix for details] exceed the respective contemporaneous CFTC-reported open interest $OI_{i}^{CTA}(t)$:
    $$\frac{1}{M} \sum_{t=1}^{M} \mathbb{I}\{n_{i}^{CTA}(t)>OI_{i}^{CTA}(t)\} \text{ for each asset } i,$$
    where $M$ is the number of months in the evaluation period.
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Asset-level thought experiment:

- **Scenario:** Entire systematic CTA AUM invested in Time-Series Momentum Strategy. 
  Realistic assumptions:
  - **Margin-to-notional ratios** for futures contracts:
    - 4% for currency futures
    - 10% for equity futures
    - 3% for bond futures
    - 10% for commodity futures
  - **Margin-to-equity ratio** for CTAs: 10% (in practice, in the range 8% - 12%)

- **Objective:** Compare the number of contracts per asset that would be needed with the contemporaneous CFTC-reported Open Interest:
  - Calculate the average number of months that the number of contracts $n_{CTA}^i(t)$ per asset [see Appendix for details] exceed the respective contemporaneous CFTC-reported open interest $OI_{CTA}^i(t)$:
    
    $$\frac{1}{M} \sum_{t=1}^{M} \mathbb{1}\{n_{CTA}^i(t) > OI_{CTA}^i(t)\} \text{ for each asset } i,$$

    where $M$ is the number of months in the evaluation period.
Mainly illiquid contracts suffer from OI exceedances; strategies not liquidity-optimised.

The hypothesis of more OI exceedances for commodities than for financials does not hold.

End of 2011: hypothetical strategy would only employ a small fraction of global OTC derivative markets: 2.3% for commodities, 0.2% for CCYs, 2.9% for equities, 0.9% for IRs.
Mainly illiquid contracts suffer from OI exceedances; strategies not liquidity-optimised.
The hypothesis of more OI exceedances for commodities than for financials does not hold.
☆ End of 2011: hypothetical strategy would only employ a small fraction of global OTC derivative markets: 2.3% for commodities, 0.2% for CCYs, 2.9% for equities, 0.9% for IRs.
Mainly illiquid contracts suffer from OI exceedances; strategies not liquidity-optimised.

The hypothesis of more OI exceedances for commodities than for financials does not hold.

End of 2011: hypothetical strategy would only employ a small fraction of global OTC derivative markets: 2.3% for commodities, 0.2% for CCYs, 2.9% for equities, 0.9% for IRs.
Mainly illiquid contracts suffer from OI exceedances; strategies not liquidity-optimised.

The hypothesis of more OI exceedances for commodities than for financials does not hold.

End of 2011: hypothetical strategy would only employ a small fraction of global OTC derivative markets: 2.3% for commodities, 0.2% for CCYs, 2.9% for equities, 0.9% for IRs.
Concluding Remarks

1. Strong time-series momentum patterns across different trading frequencies.
2. CTA indices statistically and economically significantly explained by FTB strategies.
3. No evidence of capacity constraints in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   - Monetary/fiscal policy uncertainty particularly high recently.
   - Trends reverse more often than in the past (?)
   - Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   - Market co-movement has increased, diversification of trends has decreased.
   - Data generating process might have changed.

* Data on FTB strategies available at: http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors
Concluding Remarks

1. **Strong** time-series momentum patterns across different trading frequencies.
2. CTA indices statistically and economically significantly explained by FTB strategies.
3. No evidence of capacity constraints in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   - Monetary/fiscal policy uncertainty particularly high recently.
   - Trends reverse more often than in the past (?)
   - Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     - 25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   - Market co-movement has increased, diversification of trends has decreased.
   - Data generating process might have changed.

☆ Data on FTB strategies available at: [http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors](http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors)
Concluding Remarks

1. **Strong** time-series momentum patterns across different trading frequencies.
2. CTA indices statistically and economically significantly explained by FTB strategies.
3. No evidence of capacity constraints in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   - Monetary/fiscal policy uncertainty particularly high recently.
   - Trends reverse more often than in the past (?)
   - Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   - Market co-movement has increased, diversification of trends has decreased.
   - Data generating process might have changed.

* Data on FTB strategies available at:
  http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors
Concluding Remarks

1. **Strong** time-series momentum **patterns** across different trading **frequencies**.
2. **CTA indices** statistically and economically significantly **explained by FTB strategies**.
3. **No evidence of capacity constraints** in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   - Monetary/fiscal policy uncertainty particularly high recently.
   - Trends reverse more often than in the past (?
   - Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     - 25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   - Market co-movement has increased, diversification of trends has decreased.
   - Data generating process might have changed.

* Data on FTB strategies available at:
  [http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors](http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors)
Concluding Remarks

1. **Strong** time-series momentum patterns across different trading frequencies.
2. CTA indices statistically and economically significantly explained by FTB strategies.
3. No evidence of capacity constraints in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   ▶ Monetary/fiscal policy uncertainty particularly high recently.
   ▶ Trends reverse more often than in the past (?)
   ▶ Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   ▶ Market co-movement has increased, diversification of trends has decreased.
   ▶ Data generating process might have changed.

* Data on FTB strategies available at:
  [http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors](http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors)
Concluding Remarks

1. **Strong** time-series momentum **patterns** across different trading **frequencies**.
2. **CTA indices** statistically and economically significantly **explained by FTB strategies**.
3. **No evidence of capacity constraints** in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   - Monetary/fiscal policy uncertainty particularly high recently.
   - Trends reverse more often than in the past (？)
   - Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     - 25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   - Market co-movement has increased, diversification of trends has decreased.
   - Data generating process might have changed.

★ Data on FTB strategies available at:

http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors
Concluding Remarks

1. Strong time-series momentum patterns across different trading frequencies.
2. CTA indices statistically and economically significantly explained by FTB strategies.
3. No evidence of capacity constraints in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   ▶ Monetary/fiscal policy uncertainty particularly high recently.
   ▶ Trends reverse more often than in the past (?)
   ▶ Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   ▶ Market co-movement has increased, diversification of trends has decreased.
   ▶ Data generating process might have changed.

Data on FTB strategies available at:
http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors
Concluding Remarks

1. Strong time-series momentum patterns across different trading frequencies.
2. CTA indices statistically and economically significantly explained by FTB strategies.
3. No evidence of capacity constraints in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   - Monetary/fiscal policy uncertainty particularly high recently.
   - Trends reverse more often than in the past (?)
   - Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     - 25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   - Market co-movement has increased, diversification of trends has decreased.
   - Data generating process might have changed.

Data on FTB strategies available at:
http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors
Concluding Remarks

1. **Strong** time-series momentum **patterns** across different trading **frequencies**.
2. **CTA indices** statistically and economically **significantly explained by FTB strategies**.
3. **No evidence of capacity constraints** in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   - Monetary/fiscal policy uncertainty particularly high recently.
   - Trends reverse more often than in the past (?)
   - Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     - 25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   - Market co-movement has increased, diversification of trends has decreased.
   - Data generating process might have changed.

* Data on FTB strategies available at:
  http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors
Concluding Remarks

1. Strong time-series momentum patterns across different trading frequencies.
2. CTA indices statistically and economically significantly explained by FTB strategies.
3. No evidence of capacity constraints in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   - Monetary/fiscal policy uncertainty particularly high recently.
   - Trends reverse more often than in the past (?)
   - Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     - 25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   - Market co-movement has increased, diversification of trends has decreased.
   - Data generating process might have changed.

★ Data on FTB strategies available at:
http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors
Concluding Remarks

1. **Strong** time-series momentum patterns across different trading frequencies.
2. CTA indices statistically and economically significantly explained by FTB strategies.
3. No evidence of capacity constraints in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   - Monetary/fiscal policy uncertainty particularly high recently.
   - Trends reverse more often than in the past (??)
   - Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     - 25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   - Market co-movement has increased, diversification of trends has decreased.
   - Data generating process might have changed.

* Data on FTB strategies available at: [http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors](http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors)
Concluding Remarks

1. Strong time-series momentum patterns across different trading frequencies.
2. CTA indices statistically and economically significantly explained by FTB strategies.
3. No evidence of capacity constraints in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   - Monetary/fiscal policy uncertainty particularly high recently.
   - Trends reverse more often than in the past (?)
   - Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   - Market co-movement has increased, diversification of trends has decreased.
   - Data generating process might have changed.

Data on FTB strategies available at:
http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors
Concluding Remarks

1. Strong time-series momentum patterns across different trading frequencies.
2. CTA indices statistically and economically significantly explained by FTB strategies.
3. No evidence of capacity constraints in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   - Monetary/fiscal policy uncertainty particularly high recently.
   - Trends reverse more often than in the past (?)
   - Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   - Market co-movement has increased, diversification of trends has decreased.
   - Data generating process might have changed.

* Data on FTB strategies available at:
  http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors
Concluding Remarks

1. Strong time-series momentum patterns across different trading frequencies.
2. CTA indices statistically and economically significantly explained by FTB strategies.
3. No evidence of capacity constraints in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   ▶ Monetary/fiscal policy uncertainty particularly high recently.
   ▶ Trends reverse more often than in the past (?)
   ▶ Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   ▶ Market co-movement has increased, diversification of trends has decreased.
   ▶ Data generating process might have changed.

★ Data on FTB strategies available at:
http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors
Concluding Remarks

1. **Strong** time-series momentum patterns across different trading frequencies.
2. CTA indices statistically and economically significantly explained by FTB strategies.
3. No evidence of capacity constraints in time-series momentum strategies.

Extensions and future work:

1. Revisit CTA performance benchmark models.
2. Individual CTAs and momentum strategies across frequencies and asset classes.
3. Investigate liquidity-optimised portfolios.
4. Question remains. If not capacity constraints, then what?
   - Monetary/fiscal policy uncertainty particularly high recently.
   - Trends reverse more often than in the past (?)
   - Simple PCA analysis on the 71 futures contracts shows that the first PC explains:
     - 25% of variance till 2008; 40% for 2009-2011; peaking at 45% in January 2012.
   - Market co-movement has increased, diversification of trends has decreased.
   - Data generating process might have changed.

Data on FTB strategies available at:
http://www.imperial.ac.uk/riskmanagementlaboratory/baltas_kosowski_factors
APPENDIX
Time-Series Momentum “Smiles” (F3)

Dec.1975 - Feb.2013:
Sharpe Ratios & Correlations of Univariate Momentum Strategies (F4)

Panel A: Monthly Frequency

Panel B: Weekly Frequency

Panel C: Daily Frequency

Nick Baltas (UBS, Imperial College, QMUL)
### Time-Series Momentum Not Explained by Well-Known Benchmarks (T4)


<table>
<thead>
<tr>
<th></th>
<th>$M_{12}^1$</th>
<th>$W_s^1$</th>
<th>$D_{15}^1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>ann. alpha (%)</td>
<td>13.81***</td>
<td>16.15***</td>
<td>18.44***</td>
</tr>
<tr>
<td>MSCI</td>
<td>0.05</td>
<td>-0.14*</td>
<td>-0.15*</td>
</tr>
<tr>
<td>S&amp;P500</td>
<td>0.03</td>
<td>0.03</td>
<td>-0.04</td>
</tr>
<tr>
<td>SMB</td>
<td>-0.01</td>
<td>-0.11</td>
<td>-0.06</td>
</tr>
<tr>
<td>SCMLC</td>
<td>0.08</td>
<td>0.08</td>
<td>-0.03</td>
</tr>
<tr>
<td>HML</td>
<td>0.01</td>
<td>-0.04</td>
<td>-0.02</td>
</tr>
<tr>
<td>GSCI</td>
<td>0.01</td>
<td>0.01</td>
<td>-0.02</td>
</tr>
<tr>
<td>BOND</td>
<td>-0.05</td>
<td>-0.08</td>
<td>-0.16</td>
</tr>
<tr>
<td>UMD</td>
<td>0.32***</td>
<td>0.09*</td>
<td>-0.02</td>
</tr>
<tr>
<td>PTF Bonds</td>
<td>-0.05***</td>
<td>-0.05**</td>
<td>0.01</td>
</tr>
<tr>
<td>PTF FX</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03**</td>
</tr>
<tr>
<td>PTF Cmdty</td>
<td>0.05**</td>
<td>0.06**</td>
<td>0.07***</td>
</tr>
<tr>
<td>PTF IR</td>
<td>-0.01</td>
<td>-0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td>PTF Stock</td>
<td>0.03</td>
<td></td>
<td>0.08***</td>
</tr>
<tr>
<td>TCM 10Y</td>
<td>0.15</td>
<td>0.12</td>
<td>-0.01</td>
</tr>
<tr>
<td>BAA Spread</td>
<td>-0.24</td>
<td>-0.25</td>
<td>-0.25</td>
</tr>
<tr>
<td>adj. $R^2$ (%)</td>
<td>14.89</td>
<td>6.32</td>
<td>6.62</td>
</tr>
<tr>
<td>N</td>
<td>264</td>
<td>216</td>
<td>216</td>
</tr>
</tbody>
</table>

Nick Baltas (UBS, Imperial College, QMUL)
Correlation between univariate time-series SR’s and illiquidity ranks:
Monthly: -0.01, Weekly: -0.04, Daily: -0.05.

If anything, the negative correlation can be interpreted as more pronounced time-series momentum effects among the most liquid contracts.
Performance-Flow Relationship: Insignificant and Time-Varying (F8)

60-month rolling flow t-statistics:

Panel A: Monthly Frequency

Panel B: Weekly Frequency

Panel C: Daily Frequency

Legend:
- All excl. Commodities
- Commodities
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Must define the “portfolio weights”. Let:

- # contracts per asset -either long or short- for momentum strategy at date \( t \):
  \[
  n_i(t) = \frac{40\%}{\sigma_i(t; 60)}
  \]

- \( S_i(t) \): date \( t \) price of the futures contract of asset \( i \).
- \( s_i \): Contract size for asset \( i \) (constant over time), e.g. Index \( \times \$100 \), 1000 Barrels.
- Notional dollar amount per futures contract of asset \( i \):
  \[
  D_i(t) = S_i(t) s_i
  \]

- Notional dollar amount of all contracts of asset \( i \): \( n_i(t) D_i(t) \).
- Dollar amount in a margin account for \( n_i(t) \) contracts of asset \( i \): \( n_i(t) D_i(t) m_i \), where \( m_i \) is the *margin-to-notional ratio* for asset \( i \) (assumed constant).

→ “Portfolio Weight”: percentage of total capital (…total margin) to be used for \( n_i(t) \) contracts of the asset \( i \):
  \[
  w_i(t) = \frac{n_i(t) D_i(t) m_i}{\sum_{k=1}^{M} n_k(t) D_k(t) m_k}
  \]
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Must define the “portfolio weights”. Let:

- **# contracts per asset** -either long or short- for momentum strategy at date $t$:

  $$n_i(t) = \frac{40\%}{\sigma_i(t; 60)}$$

- $S_i(t)$: date $t$ price of the futures contract of asset $i$.
- $s_i$: Contract size for asset $i$ (constant over time), e.g. Index x $100, 1000$ Barrels.
- Notional dollar amount per futures contract of asset $i$:

  $$D_i(t) = S_i(t) s_i$$

- Notional dollar amount of all contracts of asset $i$: $n_i(t) D_i(t)$.
- Dollar amount in a margin account for $n_i(t)$ contracts of asset $i$: $n_i(t) D_i(t) m_i$, where $m_i$ is the margin-to-notional ratio for asset $i$ (assumed constant).

→ “Portfolio Weight”: percentage of total capital (...total margin) to be used for $n_i(t)$ contracts of the asset $i$:

  $$w_i(t) = \frac{n_i(t) D_i(t) m_i}{\sum_{k=1}^{M_t} n_k(t) D_k(t) m_k}$$
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Must define the “portfolio weights”. Let:

1. **Number of contracts per asset** - either long or short - for momentum strategy at date \( t \):

   \[
   n_i(t) = \frac{40\%}{\sigma_i(t;60)}
   \]

2. \( S_i(t) \): date \( t \) price of the futures contract of asset \( i \).

3. \( s_i \): Contract size for asset \( i \) (constant over time), e.g. Index \( \times $100 \), 1000 Barrels.

4. Notional dollar amount per futures contract of asset \( i \):

   \[
   D_i(t) = S_i(t) s_i
   \]

5. Notional dollar amount of all contracts of asset \( i \): \( n_i(t) D_i(t) \).

6. Dollar amount in a margin account for \( n_i(t) \) contracts of asset \( i \): \( n_i(t) D_i(t) m_i \), where \( m_i \) is the margin-to-notional ratio for asset \( i \) (assumed constant).

→ “Portfolio Weight”: percentage of total capital (...total margin) to be used for \( n_i(t) \) contracts of the asset \( i \):

\[
w_i(t) = \frac{n_i(t) D_i(t) m_i}{\sum_{k=1}^{M_t} n_k(t) D_k(t) m_k}
\]
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Must define the “portfolio weights”. Let:

- **# contracts per asset** - either long or short - for momentum strategy at date $t$:
  \[ n_i(t) = \frac{40\%}{\sigma_i(t; 60)} \]

- $S_i(t)$: date $t$ price of the futures contract of asset $i$.
- $s_i$: Contract size for asset $i$ (constant over time), e.g. Index x $100$, 1000 Barrels.
- Notional dollar amount per futures contract of asset $i$:
  \[ D_i(t) = S_i(t) s_i \]

- Notional dollar amount of all contracts of asset $i$: $n_i(t) D_i(t)$.
- Dollar amount in a margin account for $n_i(t)$ contracts of asset $i$: $n_i(t) D_i(t) m_i$, where $m_i$ is the margin-to-notional ratio for asset $i$ (assumed constant).

→ “Portfolio Weight”: percentage of total capital (…total margin) to be used for $n_i(t)$ contracts of the asset $i$:
  \[ w_i(t) = \frac{n_i(t) D_i(t) m_i}{\sum_{k=1}^{M} n_k(t) D_k(t) m_k} \]
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Must define the “portfolio weights”. Let:

- **# contracts per asset** -either long or short- for momentum strategy at date $t$:
  \[ n_i(t) = \frac{40\%}{\sigma_i(t;60)} \]

- $S_i(t)$: date $t$ price of the futures contract of asset $i$.
- $s_i$: Contract size for asset $i$ (constant over time), e.g. Index $\times$ $100$, 1000 Barrels.
- Notional dollar amount per futures contract of asset $i$:
  \[ D_i(t) = S_i(t) s_i \]

- Notional dollar amount of all contracts of asset $i$: $n_i(t) D_i(t)$.
- Dollar amount in a margin account for $n_i(t)$ contracts of asset $i$: $n_i(t) D_i(t) m_i$, where $m_i$ is the margin-to-notional ratio for asset $i$ (assumed constant).

→ “Portfolio Weight”: percentage of total capital (…total margin) to be used for $n_i(t)$ contracts of the asset $i$:

\[
    w_i(t) = \frac{n_i(t) D_i(t) m_i}{\sum_{k=1}^{M_t} n_k(t) D_k(t) m_k}
\]
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Must define the “portfolio weights”. Let:

- **# contracts per asset** -either long or short- for momentum strategy at date $t$:
  \[
  n_i(t) = \frac{40\%}{\sigma_i(t;60)}
  \]

- $S_i(t)$: date $t$ price of the futures contract of asset $i$.
- $s_i$: Contract size for asset $i$ (constant over time), e.g. Index x $100, 1000$ Barrels.
- Notional dollar amount per futures contract of asset $i$:
  \[
  D_i(t) = S_i(t) s_i
  \]

- Notional dollar amount of all contracts of asset $i$: $n_i(t) D_i(t)$.
- Dollar amount in a margin account for $n_i(t)$ contracts of asset $i$: $n_i(t) D_i(t) m_i$, where $m_i$ is the margin-to-notional ratio for asset $i$ (assumed constant).

$\rightarrow$ “Portfolio Weight”: percentage of total capital (...total margin) to be used for $n_i(t)$ contracts of the asset $i$:

\[
w_i(t) = \frac{n_i(t) D_i(t) m_i}{\sum_{k=1}^{M_t} n_k(t) D_k(t) m_k}
\]
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Must define the “portfolio weights”. Let:

- **# contracts per asset** -either long or short- for momentum strategy at date $t$:
  \[ n_i(t) = \frac{40\%}{\sigma_i(t; 60)} \]

- $S_i(t)$: date $t$ price of the futures contract of asset $i$.
- $s_i$: Contract size for asset $i$ (constant over time), e.g. Index $\times$ $100$, $1000$ Barrels.
- Notional dollar amount per futures contract of asset $i$:
  \[ D_i(t) = S_i(t) s_i \]

- Notional dollar amount of all contracts of asset $i$: $n_i(t) D_i(t)$.
- **Dollar amount in a margin account** for $n_i(t)$ contracts of asset $i$: $n_i(t) D_i(t) m_i$, where $m_i$ is the margin-to-notional ratio for asset $i$ (assumed constant).

→ “Portfolio Weight”: percentage of total capital (...total margin) to be used for $n_i(t)$ contracts of the asset $i$:
  \[ w_i(t) = \frac{n_i(t) D_i(t) m_i}{\sum_{k=1}^{M_t} n_k(t) D_k(t) m_k} \]
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Must define the “portfolio weights”. Let:

- **# contracts per asset** - either long or short - for momentum strategy at date \( t \):
  \[
  n_i(t) = \frac{40\%}{\sigma_i(t; 60)}
  \]

- \( S_i(t) \): date \( t \) price of the futures contract of asset \( i \).
- \( s_i \): Contract size for asset \( i \) (constant over time), e.g. Index \( \times \$100, 1000 \) Barrels.
- Notional dollar amount per futures contract of asset \( i \):
  \[
  D_i(t) = S_i(t) s_i
  \]

- Notional dollar amount of all contracts of asset \( i \): \( n_i(t) D_i(t) \).
- **Dollar amount in a margin account** for \( n_i(t) \) contracts of asset \( i \): \( n_i(t) D_i(t) m_i \), where \( m_i \) is the *margin-to-notional ratio* for asset \( i \) (assumed constant).

→ “Portfolio Weight”: percentage of total capital (…total margin) to be used for \( n_i(t) \) contracts of the asset \( i \):
  \[
  w_i(t) = \frac{n_i(t) D_i(t) m_i}{\sum_{k=1}^{M_t} n_k(t) D_k(t) m_k}
  \]
Open Interest & Hypothetical Implementation of Trend-Following Strategies

Systematic CTA AUM is *assumed* to be invested in the time-series momentum strategy:

- Dollar amount invested per contract: $w_i(t) \times \text{AUM}(t) \times 10\%$
- # futures positions per asset at date $t$:

$$n_i^{\text{CTA}}(t) = \frac{w_i(t) \times \text{AUM}(t) \times 10\%}{D_i(t) \times m_i} = n_i(t) \times \frac{\text{AUM}(t) \times 10\%}{\sum_{k=1}^{M_t} n_k(t) \times D_k(t) \times m_k}$$

→ Compare $n_i^{\text{CTA}}(t)$ with contemporaneous CFTC-reported open interest $OI_i^{\text{CTA}}(t)$.

- Calculate the average number of months that the number of contracts $n_i^{\text{CTA}}$ per asset exceed the respective contemporaneous open interest:

$$\frac{1}{M} \sum_{t=1}^{M} \mathbb{I}\{n_i^{\text{CTA}}(t) > OI_i^{\text{CTA}}(t)\} \text{ for each asset } i,$$

where $M$ is the number of months in the evaluation period.

Open Interest & Hypothetical Implementation of Trend-Following Strategies

Systematic CTA AUM is *assumed* to be invested in the time-series momentum strategy:

- Dollar amount invested per contract: \( w_i(t) \text{ AUM}(t) \cdot 10\% \)
- \# futures positions per asset at date \( t \):

\[
n_{i_{\text{CTA}}}^{}(t) = \frac{w_i(t) \text{ AUM}(t) \cdot 10\%}{D_i(t) m_i} = n_i(t) \frac{\text{AUM}(t) \cdot 10\%}{\sum_{k=1}^{M_t} n_k(t) D_k(t) m_k}
\]

\( \rightarrow \) Compare \( n_{i_{\text{CTA}}}^{}(t) \) with contemporaneous CFTC-reported open interest \( OI_{i_{\text{CTA}}}^{}(t) \).

- Calculate the average number of months that the number of contracts \( n_{i_{\text{CTA}}}^{} \) per asset exceed the respective contemporaneous open interest:

\[
\frac{1}{M} \sum_{t=1}^{M} \mathbb{I}\{n_{i_{\text{CTA}}}^{}(t) > OI_{i_{\text{CTA}}}^{}(t)\} \text{ for each asset } i,
\]

where \( M \) is the number of months in the evaluation period.

Open Interest & Hypothetical Implementation of Trend-Following Strategies

Systematic CTA AUM is *assumed* to be invested in the time-series momentum strategy:

- **Dollar amount invested per contract:** $w_i(t) \cdot \text{AUM}(t) \cdot 10\%$
- **# futures positions per asset** at date $t$:

\[
 n_{i}^{\text{CTA}}(t) = \frac{w_i(t) \cdot \text{AUM}(t) \cdot 10\%}{D_i(t) \cdot m_i} = n_i(t) \cdot \frac{\text{AUM}(t) \cdot 10\%}{\sum_{k=1}^{M_t} n_k(t) \cdot D_k(t) \cdot m_k}
\]

→ Compare $n_{i}^{\text{CTA}}(t)$ with contemporaneous CFTC-reported open interest $OI_{i}^{\text{CTA}}(t)$.

- Calculate the average number of months that the number of contracts $n_{i}^{\text{CTA}}$ per asset exceed the respective contemporaneous open interest:

\[
 \frac{1}{M} \sum_{t=1}^{M} \mathbb{I}\{n_{i}^{\text{CTA}}(t) > OI_{i}^{\text{CTA}}(t)\} \quad \text{for each asset } i,
\]

where $M$ is the number of months in the evaluation period.

Open Interest & Hypothetical Implementation of Trend-Following Strategies

Systematic CTA AUM is *assumed* to be invested in the time-series momentum strategy:

- Dollar amount invested per contract: \( w_i(t) \cdot \text{AUM}(t) \cdot 10\% \)
- # futures positions per asset at date \( t \):

\[
n_{i}^{\text{CTA}}(t) = \frac{w_i(t) \cdot \text{AUM}(t) \cdot 10\%}{D_i(t) \cdot m_i} = n_{i}(t) \cdot \frac{\text{AUM}(t) \cdot 10\%}{\sum_{k=1}^{M_t} n_k(t) \cdot D_k(t) \cdot m_k}
\]

→ Compare \( n_{i}^{\text{CTA}}(t) \) with contemporaneous CFTC-reported open interest \( OI_{i}^{\text{CTA}}(t) \).

- Calculate the average number of months that the number of contracts \( n_{i}^{\text{CTA}} \) per asset exceed the respective contemporaneous open interest:

\[
\frac{1}{M} \sum_{t=1}^{M} \mathbb{I}\{n_{i}^{\text{CTA}}(t) > OI_{i}^{\text{CTA}}(t)\} \text{ for each asset } i,
\]

where \( M \) is the number of months in the evaluation period.

Open Interest & Hypothetical Implementation of Trend-Following Strategies

Systematic CTA AUM is *assumed* to be invested in the time-series momentum strategy:

- Dollar amount invested per contract: $w_i(t) \text{AUM}(t)$ 10%
- # futures positions per asset at date $t$:

$$n_{i\text{CTA}}(t) = \frac{w_i(t) \text{AUM}(t) \times 10\%}{D_i(t) m_i} = n_i(t) \frac{\text{AUM}(t) \times 10\%}{\sum_{k=1}^{M_t} n_k(t) D_k(t) m_k}$$

→ Compare $n_{i\text{CTA}}(t)$ with contemporaneous CFTC-reported open interest $OI_{i\text{CTA}}(t)$.

- Calculate the average number of months that the number of contracts $n_{i\text{CTA}}$ per asset exceed the respective contemporaneous open interest:

$$\frac{1}{M} \sum_{t=1}^{M} \mathbb{1}\{n_{i\text{CTA}}(t) > OI_{i\text{CTA}}(t)\} \text{ for each asset } i,$$

where $M$ is the number of months in the evaluation period.

Open Interest & Hypothetical Implementation of Trend-Following Strategies

Systematic CTA AUM is assumed to be invested in the time-series momentum strategy:

- Dollar amount invested per contract: $w_i(t) \text{AUM}(t) \times 10\%$
- \# futures positions per asset at date $t$:

$$n_i^{\text{CTA}}(t) = \frac{w_i(t) \times \text{AUM}(t) \times 10\%}{D_i(t) \times m_i} = n_i(t) \frac{\text{AUM}(t) \times 10\%}{\sum_{k=1}^{M} n_k(t) \times D_k(t) \times m_k}$$

→ Compare $n_i^{\text{CTA}}(t)$ with contemporaneous CFTC-reported open interest $OI_i^{\text{CTA}}(t)$.

- Calculate the average number of months that the number of contracts $n_i^{\text{CTA}}$ per asset exceed the respective contemporaneous open interest:

$$\frac{1}{M} \sum_{t=1}^{M} \mathbb{1}\{n_i^{\text{CTA}}(t) > OI_i^{\text{CTA}}(t)\} \text{ for each asset } i,$$

where $M$ is the number of months in the evaluation period.