Smart Beta: Managing Diversification of Minimum Variance Portfolios

Thierry Roncalli

Discussion – Marie Brière

QMI Conference - Imperial College London - 4 Nov 2015
The paper in brief

- Paper proposes a unified framework to understand risk-based portfolios
 - Global minimum variance (GMV)
 - Equal weight (EW)
 - Equal risk contribution (ERC)
 - Max diversification portfolio (MDP)

- These portfolios are special cases of a volatility minimization problem with different diversification constraints
 - GMV: only budget constraint
 - EW: add Herfindahl index « weight diversification » constraint
 - ERC: add « risk contribution diversification » constraint
 - MDP: « diversification ratio » constraint

- Constraints can be relaxed by changing the values of c1, c2 and c3
The paper in brief

- Characterizes the tradeoff between (1) portfolio volatility, (2) the 3 different forms of “diversification”, (3) deviation to the cap weighted index (TE or beta)
 - Each « smart beta » strategy targets a different level of volatility reduction
 - When adjusting the constraint to target the same level of volatility, the portfolios become comparable

- Proposes a unified optimization framework allowing to mix the diversification constraints
 - Two parameters to control the tradeoff between the different forms of diversification
 - A third parameter to control for TE

- Examines the out of sample performances of smart beta portfolios during bull and bear markets and proposes dynamic smart beta rebalancing strategies depending on market conditions
 - Bull market: high diversification
 - Bear markets: high volatility reduction
General comments

- Very nice, clearly written paper

- Tackles a very interesting question, important for practitioners: the tradeoff between mean-variance efficiency and “diversification”
 - Portfolios constructed using sample moments often involve very extreme positions, practitioners do not like it!

- Provides very useful results
Background

What is the relationship between “weight diversification” and mean-variance efficiency?

- Mean-variance efficient portfolios are not necessarily well diversified
- Mean variance CAPM requires diversification only if the market cap weighted ptf is diversified
- Black and Litterman (1990): extreme weights generated by asset allocation models are a major obstacle to implementation
- Practitionners suspicious of ptf not naively diversified: very often implement weight constraints to force diversification (success of 1/N ptf, etc.)

All this justifies the interest of introducing a diversification constraint in ptf optimization techniques, but what is precisely the objective?
Questions

Q1: Why a diversification constraint?

- Hypothesis 1: Reduce the estimation error

- The investor cares only about volatility reduction – diversification constraints are here only to help achieving efficient volatility reduction out of sample

Csq: the portfolios should be evaluated out of sample on their volatility reduction compared to the GMV (and not the market cap portfolio)

- If extreme weights are due to estimation errors in the sample moments, then adding diversification constraints should help

- If extreme weights are due to the characteristics of the asset returns’ moments, then diversification constraints will not add much

- It would be interesting to know!
Questions

Q1: Why diversification constraints?

- Hypothesis 2: This is part of the investor’s objectives

- Having low diversification is a problem per se for the investor and should enter the objective function of the investor

Csq: the portfolio should be evaluated in sample but also out of sample on the corresponding diversification measures as well

- This is lacking in the paper: we only have a comparison of volatility reduction / TE (fig 2.10 & 2.11)

- Add the risk diversification / diversification ratio out of sample measures
Questions

Q2: Evaluation of the smart beta strategies

Is volatility the best measure to consider to assess the portfolio risk?

– We know that naive diversification strategies like 1/N increase tail risk and make ptf returns more concave relative to MC ptf because it is similar to a conservative long term asset mix (buy equities as equity market falls and sell them when it rises).

– Manipulation-proof performance measures (Goetzmann et al., 2007) ?

Other criterias to evaluate the portfolios?

– Table 2.5 shows that when adjusting the diversification constraints to achieve the same level of volatility reduction, the 3 diversification constraints become comparable, returns are highly correlated across diversification stratgeies

– Other criteria needed to assess the ptf ?

– Distance to the efficient frontier? Horizontal or vertical distance (Basak et al., 2002 ; Brière et al., 2013), Turnover of the portfolios ?
Q3: Could we try to characterize the tradeoff between volatility reduction and diversification?

- Green and Hollified (JoF 1992) show that extreme weights in minimum variance portfolios are due to the dominance of a single factor in the covariance structure of returns, this creates high correlation between naively diversified portfolios

- Csq: If one single factor dominates, using a diversification constraint might not be a good idea

- We will loose a lot in terms of volatility by forcing a certain level of diversification

Could be interesting to examine the dispersion of individual assets beta in the different universe as a factor explaining the tradeoff between volatility reduction and diversification

- For ex: Emerging markets: strong beta dispersion, less concentrated portfolios (there is more « natural » diversification), the diversification constraint should penalize less than for a small universe (Eurostoxx 50) much more concentrated
Questions

Q3 (ctnd): Could we try to characterize the tradeoff between volatility reduction and diversification?

- Seems to be true from Fig 2.11: when imposing same equal weight constraint to all indices, volatility increase depends on the universe

- Related to the beta dispersion

<table>
<thead>
<tr>
<th></th>
<th>Average volatility reduction</th>
<th>volatility increase from GMV to EW</th>
<th>beta dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GMV</td>
<td>EW</td>
<td></td>
</tr>
<tr>
<td>SX5E</td>
<td>38</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>TPX100</td>
<td>45</td>
<td>3</td>
<td>42</td>
</tr>
<tr>
<td>SPX</td>
<td>50</td>
<td>-10</td>
<td>60</td>
</tr>
<tr>
<td>MXEF</td>
<td>70</td>
<td>5</td>
<td>65</td>
</tr>
</tbody>
</table>

- This tradeoff might be different for alternative « diversification constraints », also involving the volatilities
Questions

Q4: Next step? Mean variance framework with a diversification constraint? Introducing expected returns?

Alternative way to present the results?

- present the optimisation problem as a multi-criteria optimisation problem like portfolio optimization with skewness, kurtosis etc.

- Different levels of risk aversion to the different diversification measures (see Jondeau and Rockinger EFM 2006 for ex)

- Build a 3-dimensions efficient frontier (risk, return, diversification) allowing to represent the tradeoff between risk/return and diversification
C1: Why does the « max diversification » constraint appear in the budget constraint and not in the diversification constraint?

- We could have a diversification constraint with 2 parameters representing the tradeoff between the 3 types of diversification constraints.

\[
D(x; \gamma) = \gamma \sum_{i=1}^{n} \ln x_i - (1 - \gamma) \sum_{i=1}^{n} x_i^2
\]

\[
B(x; \delta) = \delta \sum_{i=1}^{n} x_i + (1 - \delta) \sum_{i=1}^{n} x_i \sigma_i
\]
A joint stock company (Société anonyme) with registered capital of 546,162,915 euros
An investment management company approved by the French Securities Authority (Autorité des marchés financiers) under no. GP 04000036
Registered office: 90 boulevard Pasteur 75015, RCS Paris no. 437 574 452