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Abstract

Using a composite likelihood approach, we analyze the pairwise dependence of defaults
within a set of securitized subprime mortgages originated in Los Angeles between 2000
and 2011. As the main factors affecting default dependence, we propose geographic
proximity as well as the similarity of mortgages in terms of various other time-varing
economic variables. Thus, in addition to geographic distance, we employ measures of
non-geographic distance, in terms of both individual mortgages and their neighborhood
characteristics. For physical distance, we use a squared exponential correlation function,
a special case of the Matérn function. Our results show that physical distance has a
strongly significant effect on default dependence. Furthermore, even after controlling
for physical distance, a number of these non-geographic measures prove significant in
explaining default dependence.
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1 Introduction

The subprime credit crisis beginning in 2007 has had a profound effect, not just on the

U.S. economy but on the world economy. An understanding of the nature of mortgage

default, and in particular of how such defaults tend to occur together, with a resulting

accumulated effect of great macroeconomic consequence, is an urgent task. At a more

general, but technical level, dependence between defaults is an important dimension for

credit risk of all kinds. Even with the individual probabilities of default taken as given,

a pool of mortgages and derivative products written on it are riskier when the defaults

become more dependent. Default dependence is central to the risk management of debt

portfolios, and to the design, pricing, and risk management of securitized credit products,

such as mortgage backed securities (MBS),1 which can be viewed as derivatives on the

default probabilities and correlations of their underlying assets (see Duffie & Singleton

2003, Lando 2004, Schoenbucher 2003).

In this paper, we analyze the default dependence within a large data set of individual

U.S. nonconforming securitized mortgages originated in Los Angeles between 2000 and

2011. Our data both predate and include the subprime crisis. We propose, as the main

factors affecting default dependence, geographic proximity, similarity of characteristics of

mortgages and other time-varying economic variables. To determine the effect of these

factors, we first use a multinomial logistic framework in order to estimate the default

probability of each mortgage. Second, we rely on a copula model to provide a flexible

dependence structure. To capture the effect of physical distance on dependence, we use a

squared exponential correlation function, a special case of the Matérn function. Finally,

given the difficulty of specifying a joint distribution of default, we rely on a bivariate

composite likelihood approach to estimate the dependence parameters.

The main contribution of this paper is to explicitly model the default dependence of

mortgages, where in addition to considering macroeconomic variables, we take into account

1Mortgage backed securities (MBSs) are assets whose pay-off depends on large pools of underlying mort-
gages.
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the mortgages’ geographic and non-geographic proximities. While default dependence of

mortgages is an important part of the risk of pools of mortgages and mortgage backed

securities (MBS), there have been very few studies on its determinants. This paper aims

to fill this gap. Using a large portfolio of residential subprime loans from an anonymous

subprime lender, Cowan & Cowan (2004) show that the correlation of defaults increases

as the internal credit rating of mortgages declines. However, they refrain from modeling

default probabilities, and rely instead on realized defaults.

Several papers in the real estate literature take account of spatial dependence. For

instance, Case, Clapp, Dubin & Rodriguez (2004) and Bourassa, Cantoni & Hoesli (2007)

study spatial dependence in house prices to aid in their prediction. Deng, Pavlov & Yang

(2005) incorporate space-varying dependence in the residuals of a competing hazard model

of mortgage termination with refinance, sale and default. They use a space-varying coef-

ficient method to estimate the spatial dependence between the unobserved random effects

of their competing hazards. Their assumption, that mortgages with similar characteristics

tend to cluster in space, improves the performance of their model. Kau, Keenan & Li

(2011) model termination risks of mortgages using a shared frailty model. They show that

mortgages from the same MSA have higher correlations than mortgages originated from

different MSAs, and that geographic effects are heterogeneous across MSAs. While these

papers consider dependence in default probabilities, they attribute it exclusively to spatial

proximity. In our approach, we explicitly consider both geographic and non-geographic

distance of mortgages to measure their dependence. Moreover, we use copulas instead of

considering the dependence as a nuisance parameter.

Conley & Topa (2002) use a similar approach in a different context. More specifically,

they examine the spatial patterns of unemployment in Chicago, and use several distance

metrics based on ethnicity, occupation and travel time, to estimate non-parametric esti-

mates of autocorrelations in unemployment rates across census tracts. However, the method

they use does not allow them to estimate the effect of more than two distance metrics at

the same time. This paper more clearly shows the multidimensional interaction among
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distance metrics.

It is not a trivial task, however, to estimate dependence of default hazard using copulas,

since building a multivariate dependence structure to incorporate the spatial correlation is

not feasible when using a data set as large as ours. We use instead a composite likelihood

approach, which allows us to estimate the dependence structure by modeling and then

adding up the lower dimensional margins.Paik & Ying (2012) employ a Cox proportional

hazard model with a Farlie Gumbel Morgenstern (FGM) copula with a composite likelihood

in order to treat spatially correlated survival data using pairwise distributions. They assess

whether geographic distance is an appropriate metric to describe dependence. This paper

extends previous research through the use of copulas different than the FGM as well as

different functional forms of distances.

The remainder of this paper is organized as follows. In section 2, we explain both

the multinomial logit model we use the marginal estimation as well as the copula and the

Matérn function we use to treat dependence. Section 3 explains our two-step estimation

procedure based on the composite likelihood approach. Section 4 describes the data and

the results. Section 5 concludes.

2 The Model

In this section, we first introduce the logistic regression model we use for the marginal

estimation. We then introduce the copula models we apply to measure the dependence

between pairs of mortgages across geographical distance. We also discuss the squared

exponential correlation function, which describes the nonlinear effect of distance on the

pairwise dependence between mortgages.

2.1 Multinomial logistic (MNL) regression model

Since our aim is to measure the correlation of default probabilities of mortgages across

distance, we need to first estimate the default probability of each mortgage. At any given
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point in time, each mortgage faces three different risks: prepayment, default or censor-

ing. There are several possible models for survival data with grouped durations, such as

proportional hazard (PH), probit and logit models. Sueyoshi (1995) compares these three

models in terms of the their baseline hazard and finds that duration (PH) models and

binary response models (probit and logit) produce very similar results. Corrente, Chalita

& Moreira (2003) also compare a grouped duration Cox proportional hazard model with

a logit model, and find that both types of models give similar values for the Akaike Infor-

mation criterion (AIC), an indicator of the quality of the fit, and also for the deviance of

the model, which is akin to a residual in a linear regression. It is thus difficult to say that

one model is better than the other. However, the logit models perform better in terms of

standardized Pearson residuals. An additional complication that we need to deal with is the

competing risk nature of our data. While we are mainly interested in default, households

can also prepay or their behavior be censored, which is the case when by the end of our

sample period, neither of the other two outcomes has occurred. Therefore we consider a

right-censored multinomial logistic regression with two competing risks: prepayment and

default (see for instance Liu (2012), Chapter 7). This model has been applied before in

the context of default and prepayment in real estate (see e.g. Clapp, Goldberg, Harding &

LaCour-Little 2001, Clapp, Deng & An 2006)

Let variable Y denote our multichotomous response variable with J = 3 possible out-

comes (1 for censoring, 2 for default, 3 for prepayment) and x a vector of p explanatory

variables. The probability that mortgage i at time t experiences event k, for i = 1, . . . , n,

and k = 1, . . . , J , can be expressed as

π(k)(xit) =
exitβk

1 +
∑J

j=2 e
xitβj

, (1)

where k = 1 is the reference event.2 The loglikelihood function can thus be written as:

2To identify the model, we impose β1 = 0 for the reference event. Thus all coefficients should be
interpreted as effects relative to the reference case, which is censoring.
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Lm(β) =
T∑
t=1

n∑
i=1

3∑
k=1

δitk log (π
(k)(xit)), (2)

where δitk = 1{Yit=k} indicates that the i-th observation at time t experiences the k-th

event, being zero otherwise.

2.2 Copulas

Copulas are a convenient tool to separate the dependence between variables from their

marginal distributions, which is particularly convenient in non-Gaussian contexts. They

have a long history, partly associated with modeling dependent durations (see Gumbel

1960, Gumbel 1961). Copulas have become a standard tool in finance, used to capture the

dependence in returns as well as in the context of credit risk analysis. They have previously

been used in real estate as well, to model the dependence between house prices in different

metropolitan statistical areas (MSAs) (see e.g. Goorah 2007, Zimmer 2012). The use of

copulas relies on the celebrated Sklar (1959) theorem, which states that a joint cumulative

distribution function (CDF) F of a vector of n variables (Y1, . . . , Yn) can be written in

terms of a copula function C with dependence parameter θ, whose arguments are the n

marginal distribution functions Fi, i = 1, . . . , n:

F (y1, . . . , yn) = C(F1(y1), . . . , Fn(yn); θ). (3)

The joint probability density function (PDF), f obtains by differentiation, and can be

written as a product of the marginals and of a copula density term, which captures all the

dependence between the variables:

f(y1, . . . , yn) =
n∏
i=1

fi(yi)c(F1(y1), . . . , Fn(yn); θ). (4)

In the case of continuous marginals, copulas are uniquely identified, and they fully charac-

terize the dependence between the variables, as well as rank correlation measures, such as
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Kendall’s tau, that are invariant to any strictly increasing transformation of the data. For

instance, according to its analytical definition, Kendall’s tau between a pair of variables

(Yi, Yj) is given by

τ(Yi, Yj) = P{(Yi1 − Yi2)(Yj1 − Yj2) > 0} − P{(Yi1 − Yi2)(Yj1 − Yj2) < 0}, (5)

where (Yi1, Yj1), (Yi2, Yj2) are two observations of random variables (Yi, Yj). The pairs

are said to be concordant whenever (Yi1 − Yi2)(Yj1 − Yj2) > 0, and discordant whenever

(Yi1 − Yi2)(Yj1 − Yj2) < 0. Alternatively, we can use the analytical definition of Kendall’s

tau, as a function of the copula CDF C:

τ(C) =

∫ 1

0

∫ 1

0
C(ui, uj)dC(ui, uj). (6)

With continuous marginals, the two definitions coincide.3

Copulas are uniquely identified only on the product range of the marginal CDFs. In the

Bernoulli case, the CDF only takes on two values: Ran{Fi} = {π̄i, 1}, which corresponds to

outcomes {0, 1} of the variables, where π̄i = 1−πi, and πi is the Bernoulli parameter. Con-

sequently the copula is uniquely identified only at these points. Moreover, rank correlation

coefficients, such as Kendall’s tau now depend both on the copulas and on the marginals

(see e.g. Denuit & Lambert 2005, Nešlehová 2007, Genest & Nešlehová 2007). This is due

to the possibility of draws in discrete data, i.e. P{(Yi1 − Yi2)(Yj1 − Yj2) = 0} > 0. With

binary marginals, the probabilistic version of Kendall’s tau can be written as

τij = 2 (C(π̄i, π̄j ; θ)− π̄iπ̄j) , (7)

which illustrates the dependence of tau on the marginals π̄i and π̄j and on the copula C.

Unlike in the case of continuous margins, when the margins are discrete, Kendall’s tau is no

longer in the (-1,1) interval.4 However for binary variables, there exists a rescaled version

3For more on the probabilistic and analytical definitions of Kendall’s tau, see Genest & Nešlehová (2007).
4It can be shown that when the dependence goes from the Fréchet-Höffding lower to upper bound (from

perfect negative to perfect positive dependence), tau goes through the range (− 1
2
, 1
2
).
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of Kendall’s tau, which is in the familiar (-1,1) range. This is called Goodman’s gamma

(see Goodman & Kruskal 1954), and it is defined as:

γij =
τij

2ξij(θ)
, (8)

where ξij(θ) = 2C(π̄i, π̄j ; θ)
2+ π̄iπ̄j +C(π̄i, π̄j ; θ)(−3 + 2πi + 2πj).

As discussed by Genest & Nešlehová (2007), the differences in interpretation of rank

correlation and the the lack of unicity of the copula when the marginals are discrete do

not invalidate the use of copulas in this context, since even with discrete marginals, the

copula parameter retains its interpretation as a measure of association. There is indeed a

tradition in the statistics literature of using copula with binary data. For instance, Meester

& MacKay (1994) propose a model for binary data based on Archimedean copulas, such

as the Frank copula for exchangeable dependence, while Gauvreau & Pagano (1997) use

the Farlie Gumbel Morgenstern (FGM) copula, whereas Molenberghs & Lesaffre (1994)

advocate the use of a multivariate extension of the Plackett copula for multivariate ordinal

data. Finally Song (2000) builds multivariate distributions from a Gaussian copula whose

marginals are dispersion models, a class that includes discrete distributions, such as the

Poisson and the Bernoulli.

In the discrete case, the probability mass function (PMF), which is the discrete coun-

terpart of the PDF, obtains by finite differencing of Equation (3):

P (Y1 = y1, . . . , Yn = yn) =
∑
ν∈S

sign(ν) C(F1(ν1), . . . , Fn(νn, θ)), (9)

where the sum is over all ν = (ν1, . . . , νn) ∈ S =
∏n
i=1{yi, yi − 1} and sign(ν) ∈ {−1, 1}

equals 1 if and only if #{k : νk = yk − 1} is even. The copula parameter θ can still be

meaningfully estimated by maximum likelihood (ML). With a pair of Bernoulli variables

(Yi, Yj), the contributions to the PMF are given as:
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P (Yi = 1, Yj = 1) = 1− π̄i − π̄j + C(π̄i, π̄j , θ),

P (Yi = 1, Yj = 0) = π̄i − C(π̄i, π̄j , θ),

P (Yi = 0, Yj = 1) = π̄j − C(π̄i, π̄j , θ),

P (Yi = 0, Yj = 0) = C(π̄i, π̄j , θ).

(10)

With the previous result, we can then define the loglikelihood contribution of a single

observation:

L(Yi, Yj) = δi1δj1log (1− π̄i − π̄j + C(π̄i, π̄j , θ)) + (1− δi1)(1− δj1)log (C(π̄i, π̄j , θ))

+δi1(1− δj1)log (π̄i − C(π̄i, π̄j , θ)) + (1− δi1)δj1log (π̄j − C(π̄i, π̄j , θ)) .

(11)

To close our model, we still need to specify how the dependence parameter of the

copula varies with regressors. The problem, when estimating different copulas, is that

their parameters are not directly comparable, since they are defined on different ranges.

Therefore we map each copula parameter into its analytical Kendall’s tau, as defined in

Genest & Nešlehová (2007), and we model the effect of regressors and distance on the

analytical Kendall’s tau.5 This has the advantage that the effect of the regressors will then

all be on the same dependence measure that is in the (−1, 1) range. A similar approach is

followed by Nikoloulopoulos & Karlis (2008), who study a multivariate logit model, where

the dependence is handled by a number of parametric copulas.

2.3 Squared exponential correlation function

In order to measure spatial dependence, we use a squared exponential correlation function,

which is a special case of the Matérn correlation function. Matérn functions are used

in geostatistical modeling (see Gneiting, Kleiber & Schlather 2010, Bai 2011).6 Dubin

(1998) introduces the Matérn function into the real estate literature to account for the

5Appendix A contains the analytical Kendall’s tau as a function of the copula parameter for the copulas
we use in this paper.

6For a more detailed coverage of geospatial covariance functions, see Rasmussen & Williams (2006), Part
4.
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correlation between house prices in a prediction exercise. The Matérn function explains

the decrease of correlation with distance. It expresses the dependence between any two

mortgages separated by distance d as

kmatern(d) =
21−ν

Γ(ν)

(√
2νd

α

)ν
Kν

(√
2νd

α

)
, (12)

with positive parameters ν and α, where Kν is a modified Bessel function of the second

kind of order ν. When ν → ∞, we obtain the squared exponential correlation function:

kSE(d) = exp

(
− d2

2α2

)
. (13)

Whenever we estimate the Matérn function with an upper bound on the parameters,

the optimal parameter value for ν is always at the upper bound, which indicates that the

best model is indeed the squared exponential function (see for instance Kazianka 2013). We

follow Bai (2011) and use the center-to-center distance between our clusters. We assume

that mortgages within the same cluster (zip code) are equidependent, with dependence

parameter τ1, and that the dependence of mortgage pairs across different clusters depends

on their distance according to the quadratic correlation function introduced above. Bai

(2011) assumes that the pairwise dependence of observation pairs across clusters is smaller

than the dependence of observation pairs within a cluster. However, since we do not know

the exact locations of the houses in our sample, we cannot exclude that a mortgage pair

across different clusters could be more correlated than a pair within the same cluster.

For example, even if two arbitrary mortgages belong to different zip codes, if they share

a common border, it is quite possible that the distance between the mortgages will be

smaller than the distance between mortgages within a zip code. This is why we allow for

an additional parameter, τ2, that multiplies the distance function, and that can be different

from the within cluster dependence, τ1. The Mat’ern function was originally designed

to capture correlation, but since we are modeling dependence with copulas, we use it to

parameterize the analytical Kendall’s tau of each on of our copulas. Thus the analytical
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Kendall’s tau between mortgages i in cluster c and j in cluster d is given as:

τic,jd =


τ2 exp

(
− d2cd

2α2

)
if c ̸= d and i ̸= j,

τ1 if c = d and i ̸= j,

(14)

where dcd is center-to-center distance between clusters c and d, 0 < τ1, τ2 < 1 are de-

pendence parameters, and α > 0 is a spatial scaling parameter, which controls the speed

with which correlation decreases with distance. The larger α, the faster the dependence

decreases with distance.

2.4 Dependence across non-geographic distances

So far, our focus was on geographic distance. But geographic distance could also capture

the effect of other sources of dependence. For instance, neighbors are likely to share similar

characteristics in terms of income, jobs or credit history (see Deng et al. 2005) and are thus

more likely to be correlated than mortgagors who live far away. Alternatively, geographic

distance could also capture a contagion effect due to the occurrence of local shocks, such

as foreclosures, leading to a collapse in house prices. Harding, Rosenblatt & Yao (2009)

find that foreclosures reduce the prices of neighbors’ non-distressed sales through such a

contagion effect. More specifically, foreclosures of an immediate neighbor (located within

300 feet) induce a discount in house prices.

In order to incorporate the effect of other variables on the analytical Kendall’s tau, we

modify Equation (14) as follows:

τic,jd =


τ2νij exp

(
− d2cd

2α2

)
if c ̸= d and i ̸= j,

νij if c = d and i ̸= j,

(15)

where

νij =
exp(ψTXij)

1 + exp(ψTXij)
, (16)

and dcd, α, τ2 are as defined in Section 2.3, and Xij is a matrix of explanatory vari-
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ables. Equation (16) corresponds to a logit link function that maps regressors in the real

line to positive dependence, in the (0, 1) interval. For each non-geographic measure, Xi,

listed in Table 1, we define both the distance Dic,jd(X) = |Xic −Xjd| /2, and the aver-

age Aic,jd(X) = (Xic + Xjd)/2. When c = d, Xij consists of a vector of dimension (n ×

1), whose elements are all 1s. If distance has a significant negative (positive) impact on

dependence, this means that the dependence is higher (lower) for mortgages with similar

characteristics. If the average across pairs has a positive impact, this implies that depen-

dence is higher for higher values of the characteristic. Moreover, if the coefficients of the

difference and average are both equal to α, then this is equivalent to α max(Xic, Xjd),

which means that only the mortgage in the pair, with the largest value of characteristic

X matters for dependence, whereas it is only the smallest value of X that matters if the

coefficients on distance and average are equal but of opposite sign.7 Including both the dis-

tance and the average can capture a wide range of possible effects. For example, Figure 1

shows the pattern of dependence that emerges when distance has a negative, and average a

positive effect on dependence. Besides non-geographic distance, we also consider the effect

of the macroeconomic variables listed in Panel C of Table 1.

3 Estimation

3.1 Two-step estimation

Our interest in this paper focuses on the estimation of the determinants of the dependence

between default risk of individual subprime mortgages. Thus, in principle, we should specify

and estimate a full joint distribution for the default probabilities of all the mortgages

in our sample. Given the number of mortgages we have in our data, this would be a

daunting task. Instead, we rely on a composite likelihood approach. Composite likelihood

(CL) consists in adding up lower-dimensional margins in situations where full multivariate

modeling is infeasible, see Varin (2008) and Varin, Reid & Firth (2011) for reviews. A

7This follows from the fact that 1
2
(Xic − Xjd) +

1
2
|Xic − Xjd| = max(Xic, Xjd), while

1
2
(Xic − Xjd) −

1
2
|Xic −Xjd| = min(Xic, Xjd).
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popular implementation of CL is bivariate composite likelihood (BCL), also called pairwise

likelihood (PL), a sum of bivariate marginal models. Le Cessie & van Houwelingen (1994)

introduce CL for bivariate and more generally clustered correlated binary data. Kuk & Nott

(2000) analyzes BCL for clustered and longitudinal binary data. de Leon (2005) studies a

BCL estimation like the one of Kuk & Nott (2000), but for the grouped continuous model,

a model for multivariate ordinal data with a normally distributed latent variable.

It is common in copula modeling to separate the estimation of the margins from the

copula, mostly for reasons of computational feasibility. Joe (2005) calls this inference for

the margins (IFM). He studies the asymptotic relative efficiency (ARE)8 of the two-step

estimation procedure compared to the full maximum likelihood approach, and concludes

that for discrete margins with few categories (we have three categories), the two-step es-

timator is highly efficient, and that efficiency deteriorates only slowly with the number of

categories. The IFM method can also be applied to the composite likelihood framework.

This is the approach we follow in this paper.

Zhao & Joe (2005) compare two-step and one-step estimation in BCL for clustered

probit data with a normal copula, when there is correlation between individual units in the

same cluster, but no cross-cluster correlation. Their two-step procedure is akin to the IFM

method of Joe (2005), where the marginals are estimated first, and then the dependence

parameter, conditional on the marginal parameters. They estimate common regression

parameters for the means of the different units, and common dependence parameters for

all bivariate margins. They find that for the multivariate probit model, the higher the

within-cluster dependence, the lower the efficiency of the two-step method for the mean

compared to a one-step method. However, while the one-step method performs well for

marginal regression parameters, it is less efficient for the dependence parameters under

weak dependence. Since the dependence between the mortgages in our data is not very

large, even compared to the smallest dependence used by Zhao & Joe (2005), the loss of

8ARE(θ̂CL) = Avar(θ̂MLE)/Avar(θ̂CL), where Avar(θ̂MLE) is obtained from the diagonals of the in-
verses of the Fisher information matrix and Avar(θ̂CL) is obtained from the Godambe information matrix,
and Avar refers to the asymptotic variance.
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efficiency stemming from our use of a two-step estimation method should be extremely

reduced.

We are now ready to set up the likelihood functions for a two-step estimation. We

decompose the likelihood into two parts. The loglikelihood of the marginal is as defined

in Equation (1) and Lc is the composite likelihood method. For Y = (y1, . . . , yn) and

x = (x1, . . . , xn), we can express the marginal log likelihood and the composite likelihood

function as:

Lm(Y|x;β) =
∑T

t=1

∑n
i=1

∑3
k=1 δik log (π

(k)(xi)),

Lc(Y|x;β, θc) =
∑T

t=1

∑
(i,j)∈D
i<j

{δi1δj1log (1− π̄i − π̄j + C(π̄i, π̄j , θ))

+(1− δi1)(1− δj1) log (C(π̄i, π̄j , θ))

+δi1(1− δj1) log (π̄i − C(π̄i, π̄j , θ))

+(1− δi1)δj1 log (π̄j − C(π̄i, π̄j , θ))},

(17)

where β = (β2, β3) collects the parameters of the multinomial logit model for the competing

risks of prepayment and default, respectively, θc = (τ1, τ2, α) are the parameters of the

dependence model, δit = 1{Yit=1}, and D is a set of mortgage pairs. Estimation proceeds in

two stages. In a first step, we maximize the likelihood of the margins and we derive β̂. In a

second step, we derive θ̂c by maximizing the composite likelihood, taking β̂ as given. The

composite likelihood estimator of the dependence parameters is asymptotically normal:

√
N(θ̂c − θc) ∼ N(0,Γ(θc)), (18)

where Γ(θc) = H(θc)
−1G(θc)H(θc)

−1 is the Godambe matrix, H(θc) = E
[
−∂2Lc(θc)

∂θc∂θ′c

]
is the

Hessian, and G(θc) = E
[
∂Lc(θc)
∂θc

∂Lc(θc)
∂θ′c

]
is the score.
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3.2 Estimation of dependence across distances

3.2.1 Random mortgage pairs

According to the pairwise marginal likelihood function in Equation (17), there are
∑

s nsnt

mortgage pairs across different clusters s and t, and
∑

s ̸=t
ns(ns−1)

2 mortgage pairs from the

same cluster s. The number of mortgages in LA is 31,962. If we consider the time history of

each loan, the number of observations is 239,486. Thus, using all mortgage pairs is infeasible.

Instead, in order to estimate the correlation of mortgages across geographic distance, we

need to resort to a sampling strategy. Varin & Vidoni (2005) propose to exclude the pairs

which are located too far away from each other in order to improve numerical and statistical

efficiency of the estimation procedure. Varin et al. (2011) and Bai, Song & Raghunathan

(2012) further show that excluding pairs that are too far apart increases efficiency. We can

specify the set D of mortgages in Equation (17) as D = Dwithin
∪
Dacross, with

Dwithin = {(i, j) : i ̸= j, s = t, i ∈ ℑs, j ∈ ℑs},

Dacross = {(i, j) : 0 < ||s− t|| ≤ d, i ∈ ℑs, j ∈ ℑt},
(19)

where ℑs and ℑt are two sets of mortgages of cluster s and t. The set of mortgage pairs

across different clusters, Dacross depends on the cutoff distance d, which is the threshold for

inclusion into the sample. The measure of efficiency that is commonly used in the literature

to determine this optimal cutoff distance, is based on the trace of the Godambe matrix.

The Godambe matrix is the variance covariance matrix of the estimate, and its trace sums

the variances of all the parameters of the dependence model. In that context, the optimal

maximum distance d is the one which minimizes tr(Γ̂(d)).9

We test cutoffs of 30 km, 35 km and 40 km. For each cutoff we randomly select 20

million mortgage pairs from the whole data set, whose distances are less than the cutoff.

We then select the common history of each mortgage pair, and we exclude those mortgage

pairs, that lack a common history.10 Our results in Table 5 show that the optimal threshold

9In other words, it is the cutoff that yields the sample with the most precisely estimated coefficients.
10Two mortgages share a common history if they are both active during at least one quarter.
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is around 35 km.

3.2.2 Estimation with copula functions

First, we estimate the dependence across physical distance. We assume that all the mort-

gage pairs in the same cluster (zip code) have the same dependence τ1,
11 while for the

mortgage pairs which are from different clusters, the correlation is determined by their

distance as well as the parameters τ̂2 and α̂ via Equation (14). For ease of estimation,

we split the likelihood function into one for mortgage pairs within a cluster, Dwithin, and

one for mortgage pairs across clusters, Dacross. This is possible since there is no common

parameter between both groups.

With the estimated parameters, τ̂1, τ̂2 and α̂, we calculate a unique Kendall’s tau for

each mortgage pair. For every copula and every mortgage pair, we calculate out the value

of the dependence parameter, and we combine this with the default probabilities of the

marginal estimation in order to obtain pairwise Goodman’s gammas, via Equation (8).12

In order to see how our Goodman’s gamma changes across distance, we average gammas

for mortgage pairs falling in intervals proceeding by one-half kilometer to the maximum

distance. We estimate Gumbel, Frank, FGM, rotated Gumbel and Clayton copulas, all of

which describe different shpaes of dependence. The properties of these copulas are explained

in Appendix A.

Second, we estimate dependence across non-geographic distance. We apply the squared

correlation function for continuous variables, such as Amountij , FICOij , Current LTVij and

Current contract rateij . In addition, we try to assess the effect of various non-geographic

variables one by one in Equation (16), in order to compare the results on the distance

effect with the squared correlation function. We fix physical distance and estimate one

after another the dependence of other distances so as to figure out the interaction between

physical distance and these other distances. Finally, we put all distances into Equation

11This is the best we can do, given that we do know the location of the mortgages only up to their zip
code.

12As explained in Section 2.2, Goodman’s gamma replaces Kendall’s tau for the purpose of comparing
dependence across copulas because of the discreteness of the margins.
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(16), to see whether the parameters of the various distance measures are jointly significant.

4 Data and Results

In this section, we first explain the data we use for the estimation. We then present

the results for the marginal model. Finally, we introduce the dependence results for the

mortgages in LA.

4.1 Data

We use data provided by Black Box Logic, LLC. The data set contains a large number

of privately-securitized nonconventional mortgages originated from 1997 to 2008, covering

about 80% of the value of all securitized subprime mortgages in the US. We focus on

mortgages in the Metropolitan Statistical Area of Los Angeles, observed between the third

quarter of 2000 and the second quarter of 2011. Using the same selection criteria as Kau,

Keenan, Lyubimov & Slawson (2011) we narrow our focus on the subprime mortgages

which proved problematic during financial crisis. More specifically, we retain 30-year single-

family, residential adjustable rate mortgages (ARMs), located in the Los Angeles MSA,

whose FICO credit scores were below 720 with loan-to-value ratios (LTVs) at or above

80%. We also use data on zip code-level income and the unemployment rate taken from

the 2007-2011 American Community Survey from U.S. census Bureau. We employ the

monthly Case-Shiller house price index (HPI) at the MSA level to compute the quarterly

HPI return for LA. This results in 31,962 loans, and 239,486 quarter-loan observations when

each loan’s time history is included. We focus on Los Angeles, since that MSA contains the

largest number of loans satisfying the conditions mentioned above. Moreover, one of our

interests lies in the spatial dependence between defaults, and since we expect this to be a

local phenomenon, we do not expect that focusing on a single MSA leads to any significant

loss of information. The data set includes the zip code in which the mortgages are located

and we use this information to compute distances between zip codes.
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4.2 Marginal Model

We estimate a multinomial logistic (MNL) regression model for the default probability

of each loan in Los Angeles. Table 1 shows the explanatory variables we use. We es-

timate common regression parameters of the covariates for the marginal distribution of

each mortgage. Our choice of covariates is in line with previous literatures on mortgage

defaults (see e.g. Kau, Keenan, Lyubimov & Slawson 2011, Ashcraft, Goldsmith-Pinkham

& Vickery 2010, Deng et al. 2005, Voicu, Jacob, Rengert & Fang 2012). We assume that

mortgages are in default if they are either in foreclosure, real estate ownership (REO) or

bankruptcy. As shown in Table 2, we classify covariates as either static variables, which

usually describe the characteristics of the mortgages at origination, or as dynamic variables,

which reflect time-varying characteristics of mortgages or local economic outcomes, such as

house price index returns and past defaults, which are meant to capture a contagion effect.

In addition, we also use geographical variables to capture local economic conditions, such as

zip code level income and unemployment. Bourassa et al. (2007) discuss the importance, in

terms of prediction, of including geographic information in a spatial model of house prices.

We capture the equivalent of a nonparametric hazard function of the Cox proportional

hazard model by including a set of mortgage time dummy variables, built from Loan Age.

This reflects the systematic variation of default and prepayment risk over the life time of a

mortgage.13

Table 3 shows the default and prepayment rate of the mortgage cohorts by origination

year. It is remarkable how different the default rates are from one cohort to another. What

is especially striking is the increased default rates of mortgages that were originated after

the first quarter of 2005, compared to the earlier mortgages. Because this suggests that the

quality of mortgages can be different according to their origination year, we follow Kau,

Keenan, Lyubimov & Slawson (2011) and estimate the MNL model on a sample, split in

two according to origination date. This produces two separate sets of parameter estimates,

13Sueyoshi (1995) shows that the natural analogues of the PH model involve estimating pooled logit or
porbit models with period specific constant terms.
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and this added flexibility enhances the quality of the marginal model.14 Table 4 shows the

estimation results, which mostly agree with our expectations. The effect of contract rate is

captured by both a linear and a quadratic term, but in the range of our data, the effect is

increasing, in accordance with intuition.

4.3 Dependence model

4.3.1 Geographic distance

The results of Table 5 suggest that the optimal cutoff is around 40 km for Frank, FGM

and Clayton copulas, since the minimum value of tr(Γ̂(d)) for these copula is found to

occur at this cutoff of 40 km. On the other hand, Gumbel and rotated Gumbel copula

has optimal cutoffs at 35 km. Moreover, while the tr(Γ̂(d)) drops significantly from 30 km

to 35 km, there is hardly a change from 35 km to 40 km except Gumbel copula. This

means that even though there is an efficiency gain (loss) from enlarging the data set from

35 km to 40 km, this gain (loss) is small. Figure 2 shows that spatial dependence, measured

with Goodman’s gamma, decays monotonically with distance. This effect of distance on

dependence is significant regardless of the copula used, but the best results obtain with the

rotated Gumbel copula. The results confirm the importance of geographic proximity for the

dependence of mortgage defaults. Column (3) of Table 6 shows that the effect of geographic

distance is not eliminated, even after taking account of other measures of non-geographic

distances. In Table 6, column (2) shows the effect of geographic distance when we use a

Matérn function, while in column (3) we add geographic distance to the list of regressors

in the logit link of Equation (16).

4.3.2 Non-geographic distance

Tables 7 shows the estimation results with non-geographic distances for mortgage pairs

within and across clusters. Even after considering individual mortgage and cluster level

14Using data for the 20 largest MSAs, Kau, Keenan, Lyubimov & Slawson (2011) detect a structural
break by origination year in the last quarter of 2004, using a sup Wald test statistic.
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characteristics in the marginal estimation, we still find a significant effect of these charac-

teristics on default dependence. We now report the results of each estimation.15

First, we investigate the effect of non-geographic measures of distance on default depen-

dence, taken one at a time. The effects are quite different for mortgages between within and

across. While most distance measures, except for Low Docij , Refinanceij and Investmentij ,

have a significant effect on default dependence within clusters, the same measures have

no effect for pairs across clusters, except for Current LTVij , Current Contract Rateij and

Penaltyij . In particular, while the mortgage characteristics at origination, such as FICO,

Loan Amount and Investment, affect the default dependence within cluster, those factors

lose explanatory power across clusters. The distance measures in terms of income and un-

employment do not have a significant effect for mortgage pairs from different zip codes.16

The pattern of dependence implied by the coefficients on distances and averages are shown

across pairs of measures in Figures 3 and 4. The different economic characteristics of clus-

ters determine the dependence of a mortgage pair from the same cluster differently. The

estimation result of Table 7, Panel B, indicate that the higher unemployment rate in the

cluster is, the higher is the dependence among mortgages in that cluster, and that this effect

is statistically significant. The difference of average income, however, does not have a sig-

nificant effect. The results indicate that mortgage pairs with similar characteristics within

a cluster tend to have positive dependence. As can be seen in Figure 5, which reports the

results of a Matérn correlation function with non-geographic distances, these effects are less

important for mortgages across clusters, whose dependence is affected more by geographic

distance.

Second, in an attempt to verify how robust the effect of the mortgage and cluster

characteristics on dependence are, we take account of geographic distance and additionally

introduce each non-geographic distance in turn. Table 6 shows the results of this estimation.

15Since the gain from enlarging the data set from 35 km to 40 km is small compared to the amount of
computing resources required to estimtate, we use 35 km subsample instead of 40 km subsample for the
estimation with non-geographic distances.

16Since these measures are only available at cluster level, they can only be used for mortgage pairs in
different clusters.

20



To the sake of comparison, estimation (1) of Table 6, repeats the results of the last columns

of Table 7, about the effect of the characteristics, when geographic distance is not included.

τ2 and α are the parameters of the Matérn function. The results suggest that geographic

distance dominates all the distances in terms of all other variables. Once we condition on

geographic distance, only Current LTVij , Current Contract Rateij and Penaltyij continue

to significantly affect dependence, as they do when their effect is accounted for, one at a

time, without geographic distance.

Third, we treat geographic distance like all the other variables, and we introduce it

into the logit link function of Equation (16), along with non-geographic distances and

macroeconomic variables. Table 8 shows that the distance, based on each non-geographic

characteristic, has a similar effect on default dependence for mortgage pairs within and

across clusters. FICOij is the only variable that is significant only for mortgages from

the same cluster. The effects of Refinanceij and Penaltyij change compared to when we

consider these variables separately or with geographic distance. Thus there is some merit

in considering the effect of all these variables jointly, since some that are not individually

significant become so in the larger model. This shows that the various measures interact in

complex ways. The results show that the effects of non-geographic distance based on LTVij

and Investmentij are stronger for closely located mortgage pairs. However, mortgage pairs

far apart can still face relatively high dependence if they share similar mortgage contracts

or characteristics.

Finally, we examine the effect of the time variation in the economic situation on the

dependenc of mortgage defaults. Table 8 shows that the house price index (HPI) return

has a significant negative impact on the dependence of mortgage pairs. This means that

mortgage pairs become more dependent when the house price index is low. This captures

the sort of contagion in mortgage defaults that occurred after a collapse in house prices

during the last financial crisis. Moreover, this shows that on top of the direct effect of

house price returns on default probabilities, there is also an additional effect via increased

default dependence. This dependence channel is new in the literature, to the best of our
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knowledge. Since Current LTVij and Current Contract Rateij both reflect current economic

situation, they might compete for statistical significance with other time-varying variables.

This could explain why Past Default, which is a variable that captures contagion, is not

significant.

5 Conclusion

This paper models the dependence of mortgage defaults using alternative measures of dis-

tances, at different levels of aggregation. In particular, we use geographic distance, as well

as non-geographic measures of the distance between pairs of mortgages in terms of mortgage

and cluster level characteristics. We use a multinomial logistic regression (MNL) model in

order to estimate the default probability of each individual mortgage and a copula for the

dependence. The estimation relies on a pairwise composite likelihood. In order to measure

spatial dependence, we introduce a squared exponential correlation function, which is a

special case of the Matérn correlation function.

Our results show that the effect of geographic distance on default correlation is strongly

significant, even if we control for other measures of distance. This might be due to the fact

that distances captures the effect of unobserved factors, other than the ones we explicitly

include in our estimations. Our results concerning other non-geographic distance measures

suggest that in order to measure the risk stemming from the dependence of defaults, one

needs to consider both geographic and non-geographic distance among mortgages. Finally

we show that, in addition to the well-known effect on default probabilities, there is also

a dependence channel, whereby low house price index returns have an impact on default

dependence. These two effect concur to making MBSs riskier during economically difficult

periods.

Further research is needed to determine whether these results are in line with prime

mortgages or mortgage pairs from different MSAs. In addition, more disaggregated house

prices, geographic distance data or other cluster level demographic data would be necessary
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to tease out the unobserved variables, whose effect is captured by geographic distance.
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6 Tables

Table 1: Variable definition

Variable name Definition

Panel A. Mortgage level variables

Current LTV Loan to value ratio (LTV) at the time of observation (in
percent).

Original LTV Loan to value (LTV) ratio at origination.
LTV80 Indicator variable that equals 1 if the loan to value ratio at

origination is exactly 80%.a

Amount Loan amount at origination in constant (2000) dollars ($
million).

FICO Fair, Isaac, and Company (FICO) credit score of the bor-
rower at origination (divided by 100).

Low Doc Indicator variable that equals 1 for a loan with partial or no
verification of borrower income or assets.

Penalty Indicator variable that equals 1 for a loan with a prepayment
penalty.

Investment Indicator variable that equals 1 for a loan secured by a prop-
erty other than the borrower’s primary residence

Refinance Indicator variable that equals 1 if the loan is taken out for
the purpose of refinancing.17

Current Contract Rate Contract rate at the time of observation (in percent).
Current Contract Rate2 Square of contract rate.
Loan Age Age of loan from origination date (in months).

Panel B. Cluster level variables

Income Zip code level median household income ($ thousands).
Unemployment Zip code level unemployment rate.

Panel C. MSA level variables

HPI return Quarterly rate of change in the house price index (HPI) of
Los Angeles MSA.

Past Default Past quarter’s default rate of Los Angeles MSA, calculated
as the ratio of the number of defaults that occurred in the
last quarter to the number of mortgages that survived until
the previous quarter.

Season Sinusoidal seasonal trend with minimum in June and maxi-
mum in December.

This table defines the variables employed in the marginal as well as in the dependence model.
a There is a concern that mortgages with origination loan to value of exactly 80% (the maximum rate for eligibility
for federal mortgage insurance), might have a hidden second-tier loan, which would make those loans more risky.
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Table 2: Descriptive Statistics of model variables

Variable Mean SD Min Max

Panel A. Static variables (n = 31962)

Original LTV (%) 83.68 5.36 80 107
LTV80 0.61 0.49 0 1
Amount ($ million) 0.36 0.14 0.04 3.06
FICO 6.43 0.53 4.01 7.2
Low Doc 0.48 0.50 0 1
Penalty 0.72 0.45 0 1
Investment 0.10 0.29 0 1
Refinance 0.15 0.35 0 1
Income ($ thousands) 84.52 22.13 44.41 210.34
Unemployment (%) 10.43 2.69 0 20.3

Panel B. Dynamic variables (n = 239486)

Current LTV (%) 100.14 23.51 0.01 207.58
Current Contract Rate (%) 6.85 1.50 0.5 37.5
Season 0.0019 0.71 -1 1
Loan Age (month) 23.03 15.87 2 151
HPI return (%) -0.74 0.64 -10.11 8.38
Past Default (%) 4.78 4.79 0.46 17.25

This table provides key statistics of the explanatory variables used in the marginal
multinomial logistic model.

25



Table 3: Number of defaults and prepayments in LA by origination year and
quarter

Year Quarter # Loans Prepaid Default % Prepaid % Default

1997 1 2 . . . .
2 2 2 . 100.0% .
3 3 2 . 66.67% .
4 3 1 . 33.33% .

1998 1 1 1 . 100.0% .
2 3 1 . 33.33% .
3 6 3 . 50.00% .
4 9 6 2 66.67% 22.22%

1999 1 4 4 . 100.0% .
2 14 10 2 71.43% 14.29%
3 29 17 3 58.62% 10.34%
4 66 13 10 19.70% 15.15%

2000 1 53 9 11 16.98% 20.75%
2 87 10 14 11.49% 16.09%
3 82 22 10 26.83% 12.20%
4 61 18 10 29.51% 16.39%

2001 1 43 13 7 30.23% 16.28%
2 82 12 8 14.63% 9.76%
3 90 23 18 25.56% 20.00%
4 126 53 15 42.06% 11.90%

2002 1 130 28 10 21.54% 7.69%
2 214 94 16 43.93% 7.48%
3 197 83 18 42.13% 9.14%
4 309 140 16 45.31% 5.18%

2003 1 289 175 10 60.55% 3.46%
2 541 323 31 59.70% 5.73%
3 969 479 112 49.43% 11.56%
4 860 578 51 67.21% 5.93%

2004 1 1079 787 61 72.94% 5.65%
2 1508 1187 158 78.71% 10.48%
3 1531 1191 193 77.79% 12.61%
4 1729 1228 339 71.02% 19.61%

2005 1 2277 1594 507 70.00% 22.27%
2 2903 1704 921 58.70% 31.73%
3 2906 1306 1307 44.94% 44.98%
4 2480 857 1376 34.56% 55.48%

2006 1 1968 494 1310 25.10% 66.57%
2 2399 506 1683 21.09% 70.15%
3 2040 254 1582 12.45% 77.55%
4 1996 148 1655 7.41% 82.92%

2007 1 1649 107 1373 6.49% 83.26%
2 941 61 735 6.48% 78.11%
3 250 17 193 6.80% 77.20%
4 16 2 8 12.50% 50.00%

2008 1 15 . 8 . 53.33%
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Table 4: Estimates of the multinomial logistic model

1997-2004 Origination 2005-2008 Origination
Parameter Estimate Std Err Pr > χ2 Odds ratio Estimate Std Err Pr> χ2 Odds ratio
LTV80 0.3753 0.0815 <.0001 1.455 0.0368 0.0259 0.1551 1.037
Amount 0.0325 0.3127 0.9208 1.033 0.0280 0.0954 0.7691 1.028
Low Doc 0.1927 0.0665 0.0037 1.213 0.0586 0.0214 0.0062 1.060
Current Contract Rate 0.5354 0.1082 <.0001 1.708 −0.0657 0.0364 0.0871 0.936
Current Contract Rate2 −0.0155 0.0069 0.0247 0.985 0.0209 0.0025 <.0001 1.021
Investment 0.0172 0.1128 0.8789 1.017 0.0154 0.0327 0.6375 1.016
FICO −0.7209 0.0629 <.0001 0.486 −0.5196 0.0186 <.0001 0.595
Refinance −0.5075 0.0946 <.0001 0.602 −0.1281 0.0296 <.0001 0.878
Penalty −0.2135 0.0799 0.0075 0.808 0.0534 0.0244 0.0289 1.055
Current LTV 0.0373 0.0040 <.0001 1.038 0.0099 0.0017 <.0001 1.010
Season −0.3254 0.0477 <.0001 0.722 −0.1751 0.0141 <.0001 0.839
HPI return −0.0349 0.0134 0.0093 0.966 −0.0256 0.0032 <.0001 0.975
Past Default 0.0900 0.0208 <.0001 1.094 0.1327 0.0049 <.0001 1.142
Income −0.0466 0.0228 0.0414 0.954 −0.0755 0.0075 <.0001 0.927
Unemployment −0.0075 0.0163 0.6479 0.993 0.0016 0.0050 0.7506 1.002
Intercept Yes Yes
Loan Age Yes Yes

This table provides results of the marginal multinomial logistic model estimated on a subsample of 10,122 and 21,840 loans for
the first period and second period, respectively.
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Table 6: The effect of non-geographic distances on dependence, with and with-
out accounting for geographic distance, FGM copula.

Geographic Distance Not Included In Matérn In logit
(1) (2) (3)

Variables Estimates t-stat Estimates t-stat Estimates t-stat
Panel A. Mortgage characteristics

ψ0 −4.7765 −7.40 −4.3631 −9.16
Amount (average) 3.9765 2.55 3.0429 6.11 −1.4780 −1.30
Amountij −5.4258 −1.39 −2.8150 −0.94 9.6740 3.79
dij −0.0480 −4.87
τ2 0.0158 9.18
α 29.3416 9.00
ψ0 −2.7129 −1.39 −6.5503 −2.46
FICO (average) 0.4400 1.04 0.0801 0.60 0.6290 1.54
FICOij −0.9318 −0.76 −0.8344 −0.86 −0.5434 −0.59
dij −0.0420 −4.62
τ2 0.0204 2.11
α 29.6774 8.87
ψ0 −2.3889 −7.42 −1.9582 −5.97
Current LTV (average) 0.0092 3.66 0.8919 2.91 0.9305 3.76
Current LTVij −0.8634 −9.33 −126.5806 −7.74 −84.1000 −9.50
dij −0.0228 −4.20
τ2 0.0714 6.57
α 43.1272 8.12
ψ0 0.1878 0.52 0.6847 1.78
Current Contract Rate (average) −0.4224 −7.90 −0.3444 −9.21 −0.4093 −7.56
Current Contract Rateij −1.0176 −3.65 −0.8612 −3.24 −0.9470 −3.43
dij −0.0302 −3.90
τ2 0.2222 4.37
α 36.0778 7.31
ψ0 −3.0455 −16.66 2.3305 −10.86
Low Doc (average) −0.3924 −1.71 −0.5297 −1.57 −0.3255 −1.45
Low Docij −0.6996 −1.81 −1.0178 −2.01 −0.6754 −1.83
dij −0.0386 −4.52
τ2 0.0316 5.57
α 29.9658 8.78
ψ0 −0.7519 −13.20 −1.9127 −8.04
Penalty (average) −0.6650 −2.79 −1.0593 −3.90 −0.6731 −3.00
Penaltyij −1.1606 −2.61 −1.9430 −3.75 −1.3842 −3.05
dij −0.0413 −4.95
τ2 0.0481 5.24
α 28.6644 9.65
ψ0 −3.4461 −33.30 −2.6830 −16.74
Refinance (average) 0.2503 0.41 0.0218 0.02 0.0756 0.11
Refinanceij −0.2878 −0.40 0.0830 0.05 0.0042 0.01
dij −0.0393 −4.55
τ2 0.0229 8.65
α 29.6105 8.86
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ψ0 −3.3841 −34.70 −2.6330 −16.79
Investment (average) 0.3436 0.63 1.3796 0.65 0.4688 1.02
Investmentij −1.0976 −1.44 −2.2596 −1.03 −1.0430 −1.59
dij −0.0390 −4.54
τ2 0.0238 9.04
α 29.7851 8.81
ψ0 3.2637 −16.63 −2.6231 −11.72
LTV80 (average) −0.2459 −0.98 −0.0158 −0.03 −0.0731 −0.28
LTV80ij −0.1496 −0.41 −0.0340 −0.05 −0.0550 −0.15
dij −0.0389 −4.44
τ2 0.0232 4.94
α 29.6615 8.57

Panel B. Economic distance
ψ0 −5.1509 −7.42 −4.4664 −8.55
Income (average) 0.2201 3.15 0.1445 3.79 0.2213 3.82
Incomeij −0.1350 −0.71 −0.0096 −0.04 0.0502 0.37
dij −0.0460 −4.64
τ2 0.0266 8.30
α 29.3051 9.00
ψ0 −3.0226 −4.86 −2.0260 −3.55
unemployment (average) −0.0396 −0.64 −0.0823 −1.36 −0.0649 −1.23
unemploymentij −0.0048 −0.06 0.0870 0.73 0.0550 0.71
dij −0.0419 −4.71
τ2 0.0365 2.21
α 28.8693 9.15

Panel C. Economic situation
ψ0 −3.3119 −20.17 −2.6595 −13.61
HPI return 2.5133 0.89 0.1264 0.03 0.3334 0.11
dij −0.0390 −4.31
τ2 0.0231 6.60
α 29.6562 8.59
ψ0 −2.8196 −13.48 −2.3210 −11.36
Past Default (t-1) −6.5392 −2.76 −6.0592 −2.25 −4.3482 −1.87
dij −0.0345 −3.77
τ2 0.0314 6.20
α 31.4667 7.76
ψ0 −3.3883 −30.24 −2.6182 −15.52
∆Past Default −0.3012 −0.80 −0.6195 −0.83 −0.2941 −0.81
dij −0.0393 −4.61
τ2 0.0245 7.73
α 29.6371 9.00

This table provides FGM copula estimation results for the dependence parameters with Equation (16) in columns
(1) and (3), and with the Matérn function in column (2). Various non-geographic variables are placed into Equation
(16) and Equation (15), one at a time along with physical distance. Column (1) shows mortgage pairs within cluster,
while columns (2) and (3) show results with mortgage pairs across clusters, with a cutoff of 35 km. Past Default (t-
1) is the previous quarter’s default rate of LA. dij is physical distance between different clusters. τ2 and α are the
parameters of the Matérn function. ψ0 is the constant.
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Table 7: The effect of non-geographic distances on dependence, within and across cluster

Within cluster Across clusters
(1) (2)

Variables Estimates t-stat Estimates t-stat Estimates t-stat

Panel A. Mortgage characteristics
ψ0 −2.6371 −9.54 −4.7765 −7.40
Amount (average) 0.9706 1.19 3.9765 2.55
Amountij −4.7832 −2.10 −5.4258 −1.39
ψ0 −3.3889 −3.35 −6.0497 −2.23
FICO (average) 0.2013 1.30 0.4400 1.04
FICOij −1.2942 −3.90 −0.4659 −0.76
ψ0 0.2264 0.70 −2.3889 −7.42
Current LTV (average) −1.3773 −4.59 0.9167 3.66
Current LTVij −34.6568 −8.88 −86.3388 −9.33
ψ0 −1.8285 −4.63 0.1878 0.52
Current Contract Rate (average) −0.0194 −0.38 −0.4224 −7.90
Current Contract Rateij −0.7384 −6.45 −1.0176 −3.65
ψ0 −3.0240 −13.16 −3.0455 −16.66
Low Doci=Low Docj=1 0.7985 3.33 −0.3924 −1.71
Low Doci ̸= Low Docj 0.4420 2.01 −0.5460 −2.35
ψ0 −1.8491 −12.00 −0.7519 −13.20
Penaltyi=Penaltyj=1 −0.7937 −4.59 −0.6650 −2.79
Penaltyi ̸= Penaltyj −0.4553 −2.83 −0.9128 −3.42
ψ0 −2.4278 −41.85 −3.4461 −33.30
Refinancei=Refinancej=1 −0.8231 −0.90 0.2503 0.41
Refinancei ̸= Refinancej −0.2025 −0.42 −0.0187 −0.05
ψ0 −2.4085 −41.73 −3.3841 −34.70
Investmenti= Investmentj=1 0.2973 0.91 0.3436 0.63
Investmenti ̸= Investmentj −0.3748 −1.66 −0.3770 −0.97
ψ0 −2.9794 −15.18 3.2637 −16.63
LTV80i=LTV80j=1 1.0192 4.96 −0.2459 −0.98
LTV80i ̸= LTV80j 0.1586 0.79 −0.1978 −0.85

Panel B. Economic difference
ψ0 −2.8289 −8.64
Income (level) 0.0484 1.12
ψ0 −3.1672 −9.53
Unemployment (level) 0.0570 2.21

Panel C. Economic distance between clusters
ψ0 −5.1509 −7.42
Income (average) 0.2201 3.15
Incomeij −0.0675 −0.71
ψ0 −3.0226 −4.86
Unemployment (average) −0.0396 −0.64
Unemploymentij −0.0024 −0.06

Panel D. Economic situation
ψ0 −2.8182 −5.43 −3.3119 −20.17
HPI return −5.5791 −16.19 2.5133 0.89
ψ0 −1.8081 −18.57 −1.9193 −17.31 −2.8196 −13.47
Past Default (t-1) −7.3600 −6.75 3.2859 0.74 −6.5392 −2.76
Past Default (t-2) −11.4984 −2.40
ψ0 −2.6131 −35.88 −3.3883 −30.24
∆Past Default 0.5992 3.11 −0.3012 −0.80

This table provides estimation results of dependence parameters with the logit link function in Equation (16)
and the FGM copula. Various non-geographic variables are placed into Equation (16), one at a time. Column (1)
shows the estimation results with mortgage pairs within cluster. Estimation with mortgage pairs across clusters in
column (2) is based on the subsample with a cutoff of 35 km. Past Default (t-1) is the previous quarter’s default
rate of LA, and Past default (t-2) is the default rate two quarters ago.31



Table 8: The effect of all distances

Across Within
clusters cluster

In logit In Matérn
Variables Estimates t-stat Estimates t-stat Estimates t-stat

ψ0 0.0733 0.21 −0.2106 −0.99
Panel A. Physical distance

dij −0.0173 −2.93
τ2 0.2120 7.10
α 60.4096 5.13

Panel B. Mortgage characteristics
Amountij 0.0429 0.08 −0.0368 −0.07 −1.7561 −1.56
FICOij −0.2068 −1.29 −0.2518 −1.58 −0.3609 −3.42
Current LTVij −53.4107 −13.92 −55.4654 −12.71 −27.6117 −5.37
Current Contract Rateij −0.3507 −4.06 −0.4241 −5.68 −0.2958 −6.49
Low Docij −0.1502 −1.38 −0.1734 −1.60 0.0066 0.07
Penaltyij −0.0394 −0.34 −0.1610 −1.48 0.0715 0.72
Refinanceij −0.5569 −2.99 −0.5789 −2.89 −0.6328 −3.11
Investmentij −0.5880 −3.21 −0.5868 −3.19 −0.5288 −3.48
LTV80ij −1.9666 −4.87 −2.0585 −4.94 −0.8455 −2.98

Panel C. Economic distance
Incomeij −0.0135 −0.37 −0.0239 −0.65
Unemploymentij −0.0039 −0.17 −0.0102 −0.44

Panel D. Economic situation
HPI return −6.2521 −2.66 −6.2996 −2.82 −12.0806 −5.98
Past Default (t-1) 3.1034 1.94 6.0319 3.96 −3.1014 −1.80
∆ Past Default −2.0239 −4.65 −1.7482 −4.08 −1.0351 −3.22

This table provides estimation results of the dependence parameters in Equation (16) with the FGM copula
and estimation results of the dependence parameters with the Matérn function using rotated Gumbel copula.
All the non-geographic variables including physical distance are placed together into the logit link function of
Equation (16) and the Matérn function respectively for the mortgage pairs across clusters. We use the logit
link function with the non-geographic variables including physial distance for the mortgage pairs within cluster.
For the estimation with mortgage pairs across clusters, we use the subsample of mortgage pairs with a cutoff of
35 km. We use all possible mortgage pairs within cluster (exhaustive mortgage pairs). Past Default (t-1) is the
previous quarter’s default rate of LA. dij is physical distance between different clusters. ψ0 is a constant term.
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7 Figures

Figure 1: Functional form of dependence with distance and average for a non-
geographic variable Xi.
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This figure shows the pattern of dependence that emerges when distance has a negative, and average a positive effect

on dependence.
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Figure 2: Goodman’s gamma across distance for different copulas
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This figure shows that spatial dependence, measured by Goodman’s gamma, decays monotonically with physical

distance. The figure is based on the estimates in Table 5. The effect of geographic distance is taken into account via

a Matérn function (squared exponential correlation function) with various copulas. We combine the probability of

default from the marginal estimation with the copula estimates in order to compute Goodmans’s gamma for every

mortgage pair, using Equation (8). We then average Goodman’s gamma for mortgage pairs in 0.5 km bins. We use

the subsample of mortgage pairs with a 40 km cutoff.
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Figure 3: Dependence across parameter space (mortgage pairs within cluster)

This figure shows the pattern of dependence, measured by the FGM parameter, implied by the coefficients on non-

geographic distance and average. We use the non-geographic variables in Panel A, column (1) of Table 7, except for

the dummy variables. We use only mortgage pairs within the same cluster.
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Figure 4: Dependence across parameter space (mortgage pairs across clusters)

This figure shows the pattern of dependence, measured by the FGM parameter, implied by the coefficients on non-

geographic distance and average. We use the non-geographic variables in Panel A, column (2) of Table 7, except for

the dummy variables. We use only mortgage pairs within the same cluster.
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Figure 5: The gammas across non-geographic distance
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This figure shows how dependence, measured by Goodman’s gamma, varies with non-geographic distances for mort-

gages pairs within and across clusters. We take into account the effect of non-geographic distance via a Matérn

function (squared exponential correlation function) with a FGM copula. We use the subsample of mortgage pairs

across clusters with a cutoff of 35 km and pairs within a cluster.
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Appendices

A Copulas

A.1 functional forms

In this appendix, we introduce the bivariate copulas we work with. In the sequel, we use the notation

ui = Fi(yi).

a. Farlie Gumbel Morgenstern (FGM) The FGM copula has the form

CFGM (ui, uj ; θ) = uiuj(1 + θ(1− ui)(1− uj)), (20)

where the parameter θ is restricted to the interval [−1, 1], and θ = 0 corresponds to independence.

The FGM copula is symmetric and its Kendall’s tau is τ = 2θ
9 , which can only capture moderate

dependence, since it is in the [- 29 , 29 ] range.

b. Gumbel The Gumbel copula has the form

CG(ui, uj ; θ) = exp−((− log ui)
θ + (− log uj)

θ)
1
θ ). (21)

The Gumbel does not allow for negative dependence and it goes from independence to the Fréchet

upper bound of perfect positive dependence, as its parameter θ moves in the range [1,∞). The

Gumbel copula is asymmetric since it has upper, but no lower tail dependence. The Gumbel is often

used in rotated form, which obtains by interverting upper and lower tail, as follows: CRG(ui, uj ; θ) =

ui + uj − 1 + CG(1− ui, 1− uj ; θ). The Kendall’s tau of the Gumbel or rotated Gumbel is θ−1
θ .

c. Frank The Frank copula has the form

C(ui, uj ; θ) = −1

θ
log

(
1 +

(exp (−θui)− 1)(exp (−θuj)− 1)

exp (−θ)− 1

)
, (22)

where θ ∈ (−∞,∞) \ {0}, and the dependence covers the full possible range, including both the

Fréchet upper and lower bound. The Frank copula has neither upper nor lower tail dependence. Its

Kendall’s tau is 1− 4(D1(α)−1)
α , where D1(α) =

1
α

∫ α

0
t

exp t−1dt is the Debye function.
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d. Clayton The Clayton copula has the form

C(ui, uj ; θ) = (ui
−θ + uj

−θ − 1)−1/θ, (23)

where θ ∈ (0,∞), and the dependence covers only postive dependence, including the Fréchet upper

bound. The clayton copula is asymmetric since the dependence is concentrated in the lower tail.

B Loglikelihood, Gradient and Hessian

This appendix develops the loglikelihood function for composite likelihood estimation of the prob-

ability mass function (PMF) for bivariate default probability with copula. Define Yi, i = 1, 2 to be

Bernoulli variables with probability π̄i of default for mortgage i and Cθ(π̄1, π̄2, θ), the copula for

joint default. There are four possible outcomes for this bivariate variable, whose probabilities are

as follows:

P (Y1 = 1, Y2 = 1) = p11 = 1− π̄1 − π̄2 + C(π̄1, π̄2, θ)

P (Y1 = 1, Y2 = 0) = p10 = π̄1 − C(π̄1, π̄2, θ)

P (Y1 = 0, Y2 = 1) = p01 = π̄2 − C(π̄1, π̄2, θ)

P (Y1 = 0, Y2 = 0) = p00 = Cθ(π̄1, π̄2, θ)

(24)

In the sequel we leave out the arguments (π̄1, π̄2, θ) and write C ≡ C(π̄1, π̄2, θ). The loglikelihood

is the sum of the contributions of all four possible outcomes:

L = Y1Y2 log(p11) + (1− Y1)Y2 log(p01) + Y1(1− Y2) log(p10) + (1− Y1)(1− Y2) log(p00). (25)

The score can be written as

∂L

∂θ
= Cθ

(
Y1Y2

1

p11
− (1− Y1)Y2

1

p01
− Y1(1− Y2)

1

p10
+ (1− Y1)(1− Y2)

1

p00

)
, (26)

where Cθ = ∂C
∂θ .
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B.1 Standard Errors

In order to compute standard errors, we first need to evaluate the Hessian. Using chain rule, the

Hessian can be written as

∂2L
∂θ2 = Cθθ

(
Y1Y2

1
p11

− (1− Y1)Y2
1

p01
− Y1(1− Y2)

1
p10

+ (1− Y1)(1− Y2)
1

p00

)
− (Cθ)

2
(
Y1Y2

1
p2
11

+ (1− Y1)Y2
1

p2
01

+ Y1(1− Y2)
1

p2
10

+ (1− Y1)(1− Y2)
1

p2
00

)
,

(27)

where Cθθ = ∂2C
∂θ2 . In the next section, we give expressions for Cθ and Cθθ for each copula.

a. Farlie Gumbel Morgenstern (FGM)

Cθ = π̄1π̄2(1− π̄1)(1− π̄2)

Cθθ = 0
(28)

For all Archimedean copulas, such as the Gumbel, Frank and Clayton, the score and Hessian depend

on their generator function:18

Cθ = 1
ϕC(C,θ) [ϕθ(π̄1, θ) + ϕθ(π̄2, θ) + ϕθ(C, θ)]

Cθθ = 1
ϕt(C,θ) [ϕθθ(π̄1, θ) + ϕθθ(π̄2, θ)− ϕθθ(C, θ)− [ϕCC(C, θ)Cθ + 2ϕCθ(C, θ)]Cθ]

(29)

We now provide expressions for the partial derivatives of the generator ϕ that are needed for com-

putation of score and Hessian for each of our remaining copulas.

b. Gumbel

ϕC(t, θ) = − θ(− log(t))θ−1

t

ϕθ(t, θ) = log(− log(t))(− log(t))θ

ϕCC(t, θ) = − θ(− log(t))θ(log(t)−θ+1)
t2 log(t)2

ϕCθ(t, θ) = −((− log(t))θ−t(θ log(− log(t)) + 1))/t

ϕθθ(t, θ) = log(− log(t))2(− log(t))θ

(30)

c. Frank

18This obtains by total differentiation of ϕ (C(π̄1, π̄2, θ)) = ϕ(π̄1, θ) + ϕ(π̄2, θ) with respect to θ.
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ϕC(t, θ) = − θ
eθt−1

ϕθ(t, θ) = eθt−eθ

(eθ−1)(eθt−1)

ϕCC(t, θ) = θ2

4 sinh2(θt/2)

ϕCθ(t, θ) = eθt(θt−1)+1
(eθt−1)2

ϕθθ(t, θ) = − eθ(e2θt+1)−eθt(t2e2θ−eθ(2t2−2)+t2)
(eθt−1)2(eθ−1)2

(31)

d. Clayton

ϕC(t, θ) = −t−(θ+1)

ϕθ(t, θ) = − t−θ−1
θ2 − 1

θ t
−θ log(t)

ϕCC(t, θ) = (θ + 1)t−(θ+2)

ϕCθ(t, θ) = log(t)t−(θ+1)

ϕθθ(t, θ) = θ2 log(t)2−2tθ+2θ log(t)+2
tθθ3

(32)
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