
Cyclical β *

Paul Ehling�

BI
Costas Xiouros�

BI

August 2023

Abstract
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1 Introduction

We develop a conditional CAPM setting where the conditional market betas are endogenous in

the cash-flow dynamics. In our framework, there are two determining factors of a conditional

beta: The cyclicality of a stock, that is, a stock’s cash-flows variability over the (business) cycle;

and its cash-flow term-structure. In our reading, the literature has predominantly focused on

the second component in an effort to explain certain CAPM anomalies, e.g., growth versus

value. Our focus is on the cyclical component.

To this purpose, we find it natural to form portfolios with similar cyclical behavior and,

therefore, we study the cross-section of industry portfolios. Using the 30 industry portfolio

returns, which balances sample length with detail in industry classification, we re-confirm that

industry portfolio average returns are quite similar and only weakly related to their uncondi-

tional market betas.1 Specifically, in Figure 1 the black solid line shows the expected returns

predicted by the static CAPM based on the sample unconditional betas; the red circles are the

data and the red solid line is the linear fit to the data. The upshot is that the linear fit is

considerably flatter than implied by the static CAPM.

In the figure, the blue circles are the average returns predicted by the conditional CAPM

model where the conditional beta is driven by the cyclical component of the model and the blue

solid line is its linear fit. The blue dashed line is the linear fit of the average returns predicted

by the full model that also considers the second component, the term-structure of cash-flows.

The model explains industry returns for two reasons: The first is based on the variability of the

conditional betas over the business cycle. Specifically, according to the model, the conditional

betas of pro-cyclical (counter-cyclical) stocks decrease (increase) during economic downturns,

when the market risk premium increases. As a result, the average returns of pro-cyclical

(counter-cyclical) stocks are lower (higher) than what their average conditional betas predict.

The second reason is related to the average conditional betas. Specifically, according to the

model, the average conditional betas of pro-cyclical (counter-cyclical) stocks are lower (higher)

1The early evidence that the security market line is flatter than what the static CAPM model predicts dates
back to Friend and Blume (1970) and Black, Jensen, and Scholes (1972).
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than their unconditional betas over the historical sample.
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The figure shows the relation between average excess returns and corresponding (unconditional) market betas

for the 30 industry portfolios. Data points are denoted by red circles, and the red solid line represents the linear

fit. The black solid line represents the average excess returns projected by the static CAPM model. Blue circles

depict the average excess returns projected by the cyclical component of the model (MC-I:β̂cyc), while the blue

solid line represents the linear fit for these data. The blue dashed line represents the linear fit of the relation

between average excess returns and unconditional betas predicted by the full model (MC-I:β̂all). The quarterly

data are from 1932Q1 to 2020Q4.

Figure 1: Security Market Line – 30 industry portfolios.

The economic magnitude of these two effects is about the same. Together the two effects

make the average returns predicted by the model jointly statistically indistinguishable from

its empirical counterpart. Specifically, employing the model predicted betas, the conditional

CAPM model passes the time-series asset pricing test using the Wald statistic and generates the

lowest absolute unexplained mean returns (alpha’s) among the empirical asset pricing models

considered. In contrast, the static CAPM, the conditional CAPM with running window betas,

the Fama-French three-factor (FF3) model, with and without the momentum factor, all fail the

asset pricing test.2

We build on Hansen and Richard (1987) and Jagannathan and Wang (1996) as these works

argue in favor of the view that the CAPM holds conditionally. Jagannathan and Wang (1996)

find empirical support by using the corporate yield spread as conditioning variable for the

2The factor models considered are also rejected when tested against the 25 size and book-to-market portfolios,
consistent with the results of Hou, Xue, and Zhang (2015), who show that these models as well as the q´factor
model are all rejected by the GRS (Gibbons, Ross, and Shanken, 1989) test.
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variations in the betas and the equity premium, and including a measure of returns on human

capital as part of the returns on aggregate wealth. A number of other studies provide further

empirical evidence in support for the conditional CAPM. For example, Ang, Chen, and Xing

(2006) show that stocks whose systematic risk increases during market declines earn higher

returns relative to what the static CAPM predicts.3

Lettau and Ludvigson (2001) find that the conditional versions of the CAPM and the con-

sumption CAPM go a long way in explaining the size and value premia, where the conditioning

variable is the log wealth-consumption ratio.4 Yet, Lewellen and Nagel (2006) argue that the

covariation between betas and the equity risk premium cannot be large enough to explain the

value and momentum premia. Their empirical design uses series of short window OLS regres-

sions to infer the variations in conditional betas, and they study the post-1963 data sample.

Ang and Chen (2007) estimating instead a time-series model with time-varying betas, risk pre-

mium, and conditional volatilities, find that the conditional CAPM explains the value premium

over the long data sample from 1926–2001.

More recently, Cosemans, Frehen, Schotman, and Bauer (2016) use a hybrid approach for

estimating time-varying betas by shrinking rolling window estimates towards theoretically mo-

tivated conditional betas that depend on firm characteristics, the business cycle, and ex-ante

heterogeneity. They show that their beta estimates improve portfolio construction and cross-

sectional asset pricing tests. Another related study is Cederburg and O’Doherty (2016): Us-

ing an instrumental variable approach, they find that the conditional CAPM model explains

the “betting against beta” anomaly.5 Further, Buss and Vilkov (2012) provide support for a

monotone relation between market betas and mean returns using option prices to infer forward-

looking beta estimates. And Chang, Christoffersen, Jacobs, and Vainberg (2012) also find that

option-implied betas are better predictors of future realized betas, compared to betas estimated

3In addition, there also is evidence indicating that both corporations (Graham and Harvey, 2001) and
investors (Berk and Van Binsbergen, 2016, 2017) use the CAPM to make investment decisions and evaluate
risk.

4Lustig and Van Nieuwerburgh (2005) provide further support that a conditional version of the CCAPM
prices well the 25 size and book-to-market portfolios.

5Frazzini and Pedersen (2014) show that a “betting against beta” strategy had positive abnormal performance
over the long sample.
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using historical returns.

What sets us apart from these studies is mainly that we use a theoretical model, with

particular focus on the cyclical behavior of cash-flows, to infer how the conditional betas vary

over time. One distinctive feature of our model is that the behavior of the conditional betas is

highly non-linear over the business cycle.

Menzly, Santos, and Veronesi (2004) present a comparable general equilibrium model to

study the time-series predictability of excess returns and dividend growth. They employ a

cash-flow model for the cross-section and the Campbell and Cochrane (1999) model for the

stochastic discount factor to disentangle the offsetting effects of shocks to cash-flow expectations

and risk-aversion. Using industry portfolios they find support for their model, specifically, how

the sensitivity of cash-flow expectations to aggregate shocks affects the predictability relations.

They do not, however, examine the cross-section of expected returns.

Generalizing the model of Menzly, Santos, and Veronesi (2004), Santos and Veronesi (2010)

use it to examine the value premium. Their main conclusion is that the cyclicality (of what they

refer to as cash-flow risk) required for value stocks to explain the value premium is counter-

factually high. We abstain from making any preference assumption but instead adopt the

approach of Brennan, Wang, and Xia (2004) for modelling the stochastic discount factor. We

also use a distinct cash-flow model. We find that our model is unable to explain the average

returns of the 25 Fama-French size and book-to-market portfolios. Of course, this is not surpris-

ing since we expect cyclicality to be a stronger driver of industry returns rather than affecting

traditional stock characteristics. In other words, within a characteristic based portfolio, we ex-

pect to have both cyclical and counter-cyclical stocks. Our approach differs in that we use the

unconditional beta of a portfolio to identify its cyclicality. Therefore, we find that the variation

in conditional betas predicted by the model, given the unconditional betas of these portfolios,

cannot explain their average returns. In this sense, our results complement and strengthen the

conclusions reached in Santos and Veronesi (2010).

Lettau and Wachter (2007), on the other hand, with a similar approach to ours explain the

value premium using a model for the cross-section where ex-ante identical firms differ in their
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growth state. The key distinctive feature is the downward sloping term structure of equity

returns, which is consistent with the empirical evidence provided by Binsbergen, Brandt, and

Koijen (2012) and Van Binsbergen and Koijen (2017). To produce this feature, Lettau and

Wachter (2007) assume that discount rate shocks are not priced, while cash-flow shocks have a

negative risk premium.6 Consequently, growth firms exhibit longer durations, are more sensitive

to cash-flow shocks and require a lower risk premium. In contrast, the model of Santos and

Veronesi (2010) as well as our unconstrained model calibration imply instead an upward sloping

term structure. Importantly, our model is flexible enough to accommodate an alternative

calibration with a downward sloping term structure: Yet, even with the alternative calibration

we still find that the conditional CAPM is unable to price the 25 size and book-to-market

portfolios. Further, it is worth noting that the CAPM in Lettau and Wachter (2007) does not

hold either unconditionally or conditionally by construction, since the market portfolio bears

discount rate risk which is not priced. In our model the conditional CAPM holds approximately

regardless of the slope of the term structure of equity returns.7

Another distinctive feature of our approach compared to the studies of Lettau and Wachter

(2007) and Santos and Veronesi (2010) is that we use the theoretical model to generate the

time-series of the conditional betas which we then use to test the conditional CAPM using

historical returns. They instead compare the premia that their models predict to those found

in the data. This distinction turns out to be important because we find that certain differences

in average returns are due to the specific history of recessions we have observed.

Our study is also related to the long literature on production-based asset pricing, that has

developed several theories in which the conditional CAPM holds, where firm characteristics

are related to their conditional betas. Berk, Green, and Naik (1999) were among the first to

relate a firm’s systematic risk to real investment. Gomes, Kogan, and Zhang (2003) relate

small firms to higher and riskier growth options, while growth firms to an expected decline

6The negative risk premium of cash-flow shocks in Lettau and Wachter (2007) refer to the assumption that
negative systematic shocks increase the conditional mean of the aggregate dividend growth.

7The downward sloping term-structure in the alternative calibration requires that discount rate shocks have
negative risk premium.
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in productivity growth and shorter duration cash-flows. Carlson, Fisher, and Giammarino

(2004) explain the size effect in a similar fashion, while they relate a firm’s book-to-market to

operating leverage. Zhang (2005) and Cooper (2006), on the other hand, propose that the value

premium compensates investors for the higher risk of assets in place due to costly investment

reversibility. Petkova and Zhang (2005) provide empirical support for the time-variation in the

conditional betas of value and growth stocks, but question the economic significance. These

theories typically consider firms to be ex-ante identical, however, our focus is on the implications

of ex-ante heterogeneity in the cyclical behavior of cash-flows. For this reason we focus on

industry rather than characteristics-based managed portfolios.

2 Explaining industry portfolio returns

Before we present the model in detail, we provide intuition for its mechanism and discuss

how it performs relative to the data: In our conditional CAPM model the cash-flow dynamics

determine the conditional beta of a stock, where the exogenous risk-free rate and price of risk

drive the stochastic discount factor (SDF). A slow moving business cycle variable drives the

price or risk and aggregate dividends. In our framework, shocks to the SDF exclusively drive

aggregate quantities, including the risk-free rate, so that the conditional CAPM almost exactly

describes expected returns.8

The cash-flow dynamics of a stock are specified by modeling its dividend share, which

contains a cyclical and an idiosyncratic component. The latter is driven by a “short”-run and

a “long”-run state. As a result, the conditional beta of a stock is a function of the state of the

aggregate market and the individual state, which principally determines the term-structure of

dividends.

For each industry, we estimate two regression models to predict its beta from observable

quantities. The first captures the cyclical component through the relation with the risk-free

8Due to certain non-linearities, market returns do not perfectly correlate with the SDF. Nevertheless, devia-
tions from perfect correlation are insignificant and, hence, the conditional CAPM model predicts almost exactly
the model implied expected returns.
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rate and the market log price-to-dividend ratio. The second captures the dependence on the

individual state. We use these regressions to generate two predictions of the beta of each

industry at quarterly frequency. We then predict the return of each industry at each point

in the sample using the predicted betas and the realized market return. Finally, we average

the conditional expected returns predicted by the model, to generate average returns for the

industry portfolios over the sample.

We plot the model implied average industry returns against their sample market betas in

Figure 1. The blue circles refer to the cyclical model. The solid blue line shows the linear fit,

while the dashed line shows the linear fit of the average returns predicted by the full model. As

we see, the model that considers only the cyclical component predicts a flatter relation between

average industry returns and unconditional market betas compared to the static CAPM model,

for the specific sample. The predicted relation is close to the empirical relation. For example,

for a stock whose unconditional beta is around 0.6 (1.5) the model predicts a higher (lower)

average return compared to the static CAPM, for this sample, of about 0.45% (0.35%).9

To highlight how the model generates these results and following Jagannathan and Wang

(1996), we express the unconditional average return of a stock whose conditional market beta

varies over time. According to the conditional CAPM model, an asset’s conditional expected

excess return is given by EtpR
i
t`1 ´ Rf

t q “ βit EtpR
m
t`1 ´ Rf

t q. After applying unconditional

expectation and rearranging, we obtain

EpRi
t`1 ´R

f
t q “ βiunc ¨ EpR

m
t`1 ´R

f
t q `

“

Epβitq ´ β
i
unc

‰

¨ EpRm
t`1 ´R

f
t q ` Covpβ

i
t , R

m
t`1 ´R

f
t q.

Here, the first term corresponds to the expected return from the static CAPM predicted, where

βiunc is the unconditional market beta. The second term measures the deviation from the

static CAPM that arises when the average conditional beta differs from the unconditional beta.

Covariations between the conditional beta and the expected market return generate the third

9The full model that also contains the term-structure of cash-flows component does not offer an improvement.
We believe that this is due to secular industry trends in the sample that the model is unable to capture, since
it assumes stationary dynamics. Specifically, the model assumes that there are no structural shocks and that
the unconditional average dividend shares are equal to the sample averages.
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term. We find that each of the two terms contribute about half to the improvement relative to

the static CAPM.

We represent the sample estimates of these two terms in Figure 2 for the betas predicted

by the cyclical model. The left panel plots the sample estimate of the third term, i.e., the

covariance of β̂icyc with the following period market excess returns against the unconditional

betas. The right panel plots the sample estimate of the second term, i.e., the deviation of

the average model predicted betas Epβ̂icycq from the unconditional betas, scaled by the average

market excess return.
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This figure decomposes the difference between the average excess returns of the 30 industry portfolios predicted

by the static CAPM model and the average excess returns predicted by the cyclical component of the model

(MC-I:β̂cyc). The left panel displays the covariance between the conditional beta and the market excess returns,

while the right panel exhibits the difference between the average conditional beta and the unconditional beta,

scaled by the average market excess return. Both graphs depict these measures in relation to the corresponding

unconditional betas. The data, spanning from 1932Q1 to 2020Q4, are quarterly.

Figure 2: Decomposition of Security Market Line deviations – 30 industry portfolios.

As we see, for a stock whose unconditional beta is 0.6, the model predicts close to 0.20%

higher average return for this sample, compared to the static CAPM, due to the positive

covariation of its beta with the market excess returns. The other 0.25% of higher average

return for this sample predicted by the model comes from the fact that the average conditional

beta predicted by the cyclical model is higher than the unconditional beta. For a stock whose

unconditional beta is 1.5 these numbers are about ´0.18% and ´0.17% that make up the 0.35%

lower average return predicted by the model for this sample, compared to the static model.
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3 Model for the aggregate stock market

We build a model of β that is consistent with the conditional CAPM in that one shock drives

the stochastic discount factor (SDF), the riskless rate of return and aggregate dividends.

3.1 The SDF and aggregate dividends

In the model economy, a unique stochastic discount factor, M , prices all assets:

Mt`1 “ e´r
f
t ´

1
2
pλtq

2
´λtεt`1 , (1)

where rf stands for the one-period riskless rate of return (log), λ denotes the price of risk, ε is a

one-dimensional standard Normal shock capturing short-run macro-movements in the economy

and time runs from 0 to 8. The riskless rate of return and the market price of risk are

rft`1 “ φrr
f
t ` p1´ φrq r ` σrεt`1, (2)

λt “ λe´σλxt´qλx
2
t , (3)

where x captures persistent business cycle movements in the economy through

xt`1 “ φxxt ` εt`1. (4)

Short-run macro-movements and persistent business cycle movements drive aggregate divi-

dends, D, leading to an evolution according to

ln

ˆ

Dt`1

Dt

˙

“ µd ` σµdxt ` σdεt`1. (5)

Therefore, our model for the aggregate stock market includes the most common sources of

stock price variations, namely fluctuations in the risk-free rate, the price of risk and cash-flow

expectations.
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Following Lettau and Wachter (2007), we analyze stock prices and their relation to con-

ditional risk premia in terms of zero-coupon equities. Specifically, the stock market price-to-

dividend ratio, which we denote with Q, is given by,

Qt “

8
ÿ

τ“1

Qtpτq, Qtpτq “ Et

«

τ
ź

s“1

Mt`s
Dt`τ

Dt

ff

, (6)

where Qtpτq is the price-to-dividend ratio of the zero-coupon equity that pays the aggregate

dividend in τ periods.

3.2 Data and calibration

In our framework, the conditional CAPM holds almost exactly as there is only one macroeco-

nomic shock.10 Yet, as we show below, our model for the aggregate stock market matches the

main moments of the stock market price-to-dividend ratio, the risk-free rate, the stock market

returns, the predictability of stock market excess returns and the variance decomposition of the

stock market price-to-dividend ratio.

We work with quarterly data that cover the period from 1926Q4 to 2020Q4. We impute

the log price-to-dividend ratio (p ´ d) and the dividends of the aggregate stock market from

the CRSP stock returns with and without dividends. To minimize any effects of seasonality in

dividends, we compute the p´ d ratio by normalizing the price of the stock market portfolio at

the end of a quarter by the dividends of the last four quarters. Accordingly, the log dividend

growth is computed as the quarterly growth rate in the running four quarter aggregate dividend.

The stock market return (rm) is taken to be the return of the CRSP stock index, and the risk-

free rate is taken to be the yield to the 3-month Treasure bill, adjusted for expected inflation.

The expected inflation is estimated by fitting an AR(1) process, and the inflation is computed

as the growth rate in the CPI index.

Table 1 shows the ten parameters for two model calibrations (MC-I and MC-II). For MC-I,

10The conditional CAPM does not hold exactly because returns are not exactly normally distributed. However,
since these deviations are negligible, there is an almost perfect linear relation between conditional expected
returns and conditional betas.
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we choose r, φr and σr to fit the mean, volatility and first-lag autocorrelation of the risk-free

rate in the data and set the unconditional mean of the log aggregate dividend growth (µd) to

the corresponding sample mean in the data. To fit the autocorrelation of p ´ d, we employ

the business cycle variable (φx). Further, to minimize the distance between the model and the

data,11 we set the two parameters of the aggregate dividend growth process (σd and σµd) and

the three parameters that determine the price of risk (λ, σλ and qλ). In the estimations, we

allow σd to be anywhere from 4% to 10%.

In the estimated model MC-I, the term-structure of expected excess returns is upward slop-

ing. However, recent evidence, as in by Binsbergen, Brandt, and Koijen (2012) and Van Bins-

bergen and Koijen (2017), suggests that the contrary may be true. For this reason, we present

calibration MC-II that produces a downward sloping term-structure of equity risk premia,

through alternative values for σr, σd, σµd , λ, σλ and qλ. To do so and similar to Lettau and

Wachter (2007), we force the price of risk to respond positively to aggregate shocks by allowing

σλ to take only negative values. That is, we impose the price of risk in MC-II to be pro-cyclical

whereas the unconstrained estimation yields a counter-cyclical price of risk in MC-I. Conse-

quently, in MC-II longer duration cash-flows whose prices are more sensitive to discount rate

shocks have lower risk premia because discount rate shocks have negative risk premia.

We gather the resulting asset pricing moments in Table 2, the predictive regressions in Table

3 and the Campbell-Shiller decomposition in Table 4, where we estimate model moments by

running 1000 simulations of 400 quarters each, with a burn-in of 100 quarters. The t-statistics

(t ´ st.) measure the distance between the model moments and the data statistics, which we

compute using the standard errors of the data estimates and the standard deviation of the

model moments across the 1000 simulations.

From Table 2, we see that both calibrations of the model match the main asset pricing

11The minimization is with respect to the following moments: the mean, volatility and skewness of p´ d; the
mean, volatility and first-lag autocorrelation of the stock market returns and excess returns; the stock market
Sharpe ratio (SR); the predictability of the cumulative excess stock market returns by the p ´ d ratio over
horizons from 1 quarter up to 28 quarters and the Campbell-Shiller decomposition of p ´ d into variations
in future 60-quarter cumulative dividend growth, excess return, and risk-free rate and variations in p ´ d 60
quarters ahead.

11



Table 1: Calibrated model parameters

Description Parameter MC-I MC-II

Unconditional mean of aggregate log dividend growth µd 0.435% 0.435%
Volatility of aggregate dividend growth shocks σd 4.0% 10.0%
Volatility of shocks to aggregate conditional mean σµd

0.019% 0.002%

Persistence of business cycle variable x φx 0.985 0.985

Unconditional mean of one-period riskless rate of return r 0.125% 0.125%
Persistence of one-period riskless rate of return φr 0.69 0.69
Exposure of one-period riskless rate of return to aggregate shocks σr -0.6% 0.6%

Price of risk at steady state λ 0.157 0.250
Exposure of log price of risk to ´x σλ 0.086 -0.067
Exposure of log price of risk to ´x2 qλ 0.00192 0.00224

The table shows the parameters of the two model calibrations, MC-I and MC-II. The model is calibrated
to quarterly data, where the sample is from 1926Q4 to 2020Q4.

moments, where the t-statistics for all targeted moments are below one, except for the stock

market volatility that MC-II cannot match. Specifically, the volatility of the log price-to-

dividend ratio for the stock market is too low compared to the data, which also results in the

stock market return volatility to be counterfactually low. Based on these results, we cannot

reject the null hypothesis that the data estimates are generated from model MC-I. Further,

MC-II offers an important alternative calibration as it generates a high equity premium.

In Table 2, we also show statistics that were not targeted. One of them is the volatility of

the annual stock market dividend growth. It creates certain tensions in the model: In MC-I

the volatility of dividend growth is 2.02%, which is low relative to the data estimate of 3.31%.

The opposite is true for MC-II with a volatility of 5.01%. A higher volatility in MC-I would

generate even higher volatility for the stock market return, whereas a lower volatility in MC-II

would result in a lower volatility for the stock market log price-to-dividend ratio. The table

also shows the correlation between the one-period riskless rate of return and the stock market

p´ d ratio, which in the data is close to zero. In MC-I the correlation is ´0.473 and in MC-II

´0.058, where for the latter we do not reject the null hypothesis that the data estimates are

generated from model averages. Neither MC-I nor MC-II fit the correlation between aggregate

dividend growth and changes in the p ´ d ratio and the volatility and autocorrelation of the

running four-quarter log aggregate dividend growth, although MC-II does get the sign of the
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Table 2: Model versus data

Data MC-I t´ st. MC-II t´ st.

Targeted moments

µpp´ dq 3.419 3.370 (0.565) 3.459 (0.457)
σpp´ dq 0.447 0.407 (0.865) 0.179 (5.802)
ac1pp´ dq 0.965 0.957 (0.660) 0.971 (0.440)
skewpp´ dq 0.143 0.095 (0.178) 0.001 (0.529)

µprf q 0.124 0.124 (0.000) 0.126 (0.020)
σprf q 0.820 0.829 (0.100) 0.829 (0.100)
ac1pr

f q 0.691 0.690 (0.026) 0.690 (0.026)

µprmq 1.644 1.368 (0.619) 1.243 (0.899)
σprmq 10.521 12.582 (1.447) 5.074 (3.823)
ac1pr

mq -0.057 -0.049 (0.091) 0.164 (2.495)

µprm ´ rf q 1.520 1.245 (0.577) 1.117 (0.844)
σprm ´ rf q 10.514 12.534 (1.352) 4.978 (3.706)
ac1pr

m ´ rf q -0.044 -0.007 (0.457) 0.021 (0.810)

SR 0.145 0.099 (0.781) 0.224 (1.374)
µp∆dq 0.435 0.439 (0.014) 0.442 (0.027)

Untargeted moments

ρp∆d,∆p´ dq -0.260 0.292 (6.973) -0.427 (2.112)
ρpp´ d, rf q -0.003 -0.516 (3.320) -0.052 (0.314)
σp∆dq 3.306 2.018 (2.424) 5.011 (3.209)
ac1p∆dq 0.543 0.755 (3.308) 0.747 (3.195)

The first column shows the variable name. The second column shows the
data estimate. The third and fifth columns show the model estimates for
model calibration 1 (MC-I) and model calibration 2 (MC-II). The fourth and
sixth columns show the t-statistics (t ´ st.) of the hypotheses that the data
estimates are generated from model averages. p ´ d denotes the log price-to-
dividend ratio, rf stands for the one-period riskless rate of return, rm is the
return on the aggregate stock market, SR stands for the Sharpe ratio and
∆d is the log aggregate dividend growth rate. The data from the model are
time-aggregated. The data are quarterly: 1926Q4´ 2020Q4.

correlation right. Overall we conclude here that both calibrations have their merits.

Table 3 shows that the model captures the predictability of stock market excess returns by

the p´ d ratio. We inspect the predictability for horizons up to 28 quarters ahead and see that

all the t-statistics measuring the difference between the model and the data for horizons up to

28 quarters are below 1.4. Therefore, the predictability regressions from both calibrations of

the model relative to the data are statistically indistinguishable.

Table 4 shows the Campbell-Shiller decomposition of variations in the p´d ratio. Variations

in future excess returns are by far the most important driver of p ´ d, as indicated by the
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Table 3: Predictive regressions: model versus data

Horizon Q “ 1 Q “ 2 Q “ 4 Q “ 8 Q “ 12 Q “ 16 Q “ 20 Q “ 24 Q “ 28

Data -0.082 -0.112 -0.172 -0.241 -0.272 -0.302 -0.350 -0.400 -0.434

MC-I -0.066 -0.093 -0.131 -0.183 -0.221 -0.251 -0.276 -0.298 -0.318
t´ st. (0.289) (0.243) (0.415) (0.490) (0.392) (0.360) (0.517) (0.772) (0.918)

MC-II -0.076 -0.106 -0.144 -0.189 -0.216 -0.234 -0.246 -0.254 -0.260
t´ st. (0.102) (0.085) (0.287) (0.440) (0.428) (0.480) (0.731) (1.108) (1.374)

The second (data), third (model calibration 1) and fifth (model calibration 2) rows show the re-
gression coefficient from predictive regressions where excess returns are predicted by the log price-
to-dividend ratio for horizons Q = 1, 2, 4, 8, 12, 16, 20, 24, 28. The forth and sixth rows show
t-statistics (t´ st.) of the hypotheses that the data coefficient estimates are generated from model
averages. The data are quarterly: 1926Q4´ 2020Q4.

Table 4: Campbell-Shiller decomposition: model versus data

d rm rm ´ rf rf pp´ dq60

Data 0.154 0.605 0.657 -0.051 0.206

MC-I 0.064 0.701 0.676 0.025 0.207
t´ st. (0.850) (0.689) (0.095) (0.712) (0.006)

MC-II 0.095 0.637 0.650 -0.013 0.219
t´ st. (0.551) (0.225) (0.033) (0.356) (0.244)

The second (data), third (model calibration 1) and fifth
(model calibration 2) rows show the regression coefficient
from a Campbell-Shiller decomposition with variations in ag-
gregate dividend cash flows (d), market returns (rm), excess
returns (rm ´ rf ), riskless rate of return (rf ) and residual
variation (pp ´ dq60) with the log price-to-dividend ratio us-
ing 60 quarters. The forth and sixth rows show t-statistics
(t´ st.) of the hypotheses that the data coefficient estimates
are generated from model averages. The data are quarterly:
1926Q4´ 2020Q4.

results obtained from the data, where they account for about 65% of the volatility in p´d. The

variations associated with future risk-free rate fluctuations in the data are slightly positive but

insignificant (2%). In the model, the risk-free rate contributes small negative variations in p´d

(´7.6%) that are also insignificant, which supports our view that modeling more accurately the

dynamics of the riskless rate of return will not alter our results for the cross-section. Thus, the

variations in excess returns in the model account for about 72% of the variations in p´d, which

is a bit higher than what we see in the data. Yet, the differences between the model and the data

with respect to the variations in p´ d coming from rm´ rf and rf are statistically insignificant

with t-statistics below one. Lastly, the model matches well the remaining variations in the
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p´ d ratio that are associated with future cash-flows (g) and the p´ d ratio 60 quarters ahead

(p´ d60), with t-statistics of 0.161 and 0.356, respectively.

4 Model for the cross-section

Armed with a model for the aggregate stock market, we analyze a cross-section of returns by

modeling cash-flows. To understand persistent differences in β’s across stocks, e.g. industries,

the stocks are ex-ante heterogeneous through stationary dividend shares that neither vanish

nor take over the aggregate dividends.

4.1 Dividend shares

There are I stocks. Individual stock dividends represent shares of aggregate dividends

θit –
Di
t

Dt

, i “ 1, . . . , I, (7)

where
ři“I
i“1 θ

i “ 1. The dividend shares have a rich structure in that each dividend share has

an idiosyncratic component, denoted with yit, and a systematic component that depends on the

business cycle variable x, as follows:

θit “ yit ¨ r1` pηi ´ a1,tq fpxtqs . (8)

Consider for now that a1,t equals zero, which is a variable that ensures that dividend shares

sum up to one. Here, the parameter ηi determines the cyclicality of a stock. We allow it to

take any value between ´1 and `1, where a positive (negative) value implies a pro-cyclical

(counter-cyclical) stock. Consequently, fpxq, which is a monotonically increasing function, is

also bounded by ´1 and `1. We also require that fp0q “ 0, and f 1pxq ą 0. A natural choice

is fpxq “ Φpx; 0, ν2q ´ 1, where Φp¨;µ, σ2q is the normal cumulative distribution function with

mean µ and standard deviation σ; and the parameter ν determines the sensitivity of a stock to
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the business cycle and how this varies over the business cycle.

The idiosyncratic components yit sum up to one for each time period, that is,
řI
i“1 y

i
t “ 1,

whle the cyclical components add up to zero. For this reason, we set a1,t “
1
I

řI
i“1 y

i
tηi, which

equals zero at the steady state when yit “ yi0 for all i. It is important that a1,t also has an

expected value of zero at every other state of the idiosyncratic components of the cross section.

Moreover, as the number of stocks approaches infinity, a1,t converges to zero almost surely.

When the aggregate economy is at its steady state (x “ 0), the dividend shares are given by

yit. When the economy is growing at a faster rate than average such as during “booms,” then a

pro-cyclical (ηi ą 0) stock’s dividend share will be higher compared to the dividend share that

the stock would have had if the economy were in its steady state. Similarly, counter-cyclical

stocks “see” their dividend shares shrink during good times and expand during downturns. The

formulation of the cyclical component of the dividend shares requires that yit ! 0.5, since the

maximum number that the square bracket in (8) can take is 2.

The idiosyncratic component of a dividend share mean reverts around a time-varying long-

run mean as follows:

yit`1 “
“

φiy
i
t ` p1´ φiq y

i
t

‰

a2,t ` σiy
i
t ¨
`

ly ´ y
i
t

˘ `

εit`1 ´ ut`1
˘

, (9)

where φi P r0, 1q and each εi is an independent one-dimensional standard Normal shock. The

parameter ly ă 0.5 denotes the upper limit of y. The variable a2,t ensures that the sum of

the conditional means equals one every period; thus, a2,t “
”

1`
řI
i“1 φi ¨ py

i
t ´ y

i
tq

ı´1

. If we

assume φi “ φ for all stocks, then a2 “ 1. Similarly, u is a weighted average of the individual

shocks to ensure that the sum of the shocks equal zero; thus,

ut`1 “
I
ÿ

i“1

σiy
i
t ¨ ply ´ y

i
tq

řI
j“1 σjy

j
t ¨ ply ´ y

j
t q
εit`1.

According to equation (9), the conditional volatility of yit`1 depends on the idiosyncratic

dividend share yit and tends to zero as yit tends to 0 or ly. This prevents any stock from
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vanishing, which is important for maintaining a sufficiently large cross-section.12

The long-run mean of a dividend share also fluctuates over time according to

yit`1 “ ϕyit ` p1´ ϕqy
i
0 ` σiy

i
t ¨
`

ly ´ y
i
t

˘ `

εit`1 ´ ut`1
˘

, (10)

where ϕ P r0, 1q and each εi is an independent one-dimensional standard Normal shock. In the

same fashion as u, u is defined as a weighted average of εi’s, so that the shocks to the long-run

means sum up to zero, that is,

ut`1 “
I
ÿ

i“1

σiy
i
t ¨ ply ´ y

i
tq

řI
j“1 σjy

j
t ¨ ply ´ y

j
tq
εit`1.

Our framework can accommodate long-run means y that follow a random walk (ϕ “ 1),

and in that case we would not need to specify yi0. In our view, permanent shocks to the long-

run means capture structural shocks to the economy, which could be a significant source of

fluctuations in stock prices. However, then the boundaries would be absorbing states. This

implies that we would need to model entry by new firms. For this reason, we restrict the

analysis to cases where ϕ is close to but lower than one.

The aggregating variables a1,t, a2,t, ut, and ut always take their long-run values of either

0 or 1 when I tends to infinity. For our finite cross-section, we adopt an approach similar to

Menzly, Santos, and Veronesi (2004) and assume that these variables always take their long-run

values. Further, since the model is in discrete time, in simulations we impose the upper and

lower bounds.

4.2 Prices and expected returns

Before we fit the model to the data, we analyze how a stock’s price-to-dividend ratio, conditional

beta, and expected return behave. Let yitpτq “ Etpy
i
t`τ q denote the expected dividend share τ

12The analysis could be adapted to include the possibility of a company being driven out of the market.
Obviously, such an extension requires that new firms enter every period.
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periods ahead. Given equations (9) and (10), we obtain

yitpτq “ ȳi0 ` φ
τ
i ¨ py

i
t ´ ȳ

i
0q `

1´ φi
ϕ´ φi

pϕτ ´ φτi qpȳ
i
t ´ ȳ

i
0q. (11)

In the special case where φi “ ϕ, we have

yitpτq “ ȳi0 ` ϕ
τ
¨ pyit ´ ȳ

i
0q ` τϕ

τ´1
p1´ ϕqpȳit ´ ȳ

i
0q. (12)

Using the expression for yitpτq, we derive an expression of a stock’s price-to-dividend ratio Qi
t,

after expressing it as a sum of zero-coupon claims. This yields the following expression

Qi
t “

8
ÿ

τ“1

yitpτq

θit
rQtpτq ` ηiQ

x
t pτqs , (13)

where Qx
t pτq represents the price-to-dividend ratio of the claim to the cash-flow τ periods ahead,

that has unit exposure to the cyclical component fpxq. That is,

Qx
t pτq “ Et

«

τ
ź

s“1

Mt`sfpxt`τ q

ff

.

Similarly, we express a stock’s conditional beta as a weighted average of the conditional

betas of the zero-coupon equities as follows

βit “
8
ÿ

τ“1

yitpτq

θit
¨
βtpτqQtpτq ` ηiβ

x
t pτqQ

x
t pτq

Qi
t

. (14)

The expressions in (13) and (14) serve to analyze expected returns in the cross-section and to

expose their relation to prices.

The following proposition establishes a useful benchmark case.

Proposition 1. When dividend shares of stocks follow a random walk, i.e., yitpτq “ θit, @τ , and

exhibit no cyclicality, i.e., ηi “ 0, then βit “ 1 and Qi
t “ Qt.

Proposition 1 implies that the conditional beta of a stock deviates from one because of two
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reasons. The first is cyclicality, which is determined by ηi. Since we assume ηi to be constant,

the cyclicality of a stock implies that the average conditional beta will also differ from one.

The second is the cash-flow term-structure. For example, deviations depend on whether the

dividend share is expected to increase or decrease over time. We analyze these two features

next.

4.3 Comparative static analysis of one stock

Naturally, a pro-cyclical (counter-cyclical) stock has an average conditional beta higher (lower)

than one. However, the conditional beta depends on the state of the economy within the

business cycle. To analyze how the conditional betas vary over the business cycle, we need to

parametrize the function fpxq that determines cash-flow cyclicality. In the analysis, we assume

that ν “ 3.5 to produce a sufficiently large cross-section of unconditional betas.13 Specifically,

for this value the unconditional betas vary from slightly below 0.6 to close to 1.8 for model

MC-I, which is about the same range as we see in the data for the 30 industry portfolios. The

range for MC-II is from around 0.7 to around 2.0.

Figure 3 shows how equilibrium quantities vary over the business cycle in model MC-I. Low

(high) values for x indicate economic contractions (expansions) and the gray area shows the

distribution. In Panel A, we plot the log price-to-dividend ratio (p´d ratio) and in Panel B the

conditional beta for the market (η “ 0), a pro-cyclical stock (η “ 0.75) and a counter-cyclical

stock (η “ ´0.75). In Panel A, we observe that the market’s and the counter-cyclical stock’s

p ´ d ratios monotonically increase with the business cycle variable x, that is, they increase

when the state of the economy improves. The average p´ d ratio of the counter-cyclical stock

is the highest because it offers some insurance to negative economic shocks. However, the p´ d

ratio of the pro-cyclical stock does not vary monotonically with the business cycle. In an area

close to the mean, the p´d ratio decreases with x, despite of the decrease in the equity premium

(see Panel C). The reason for this behavior is principally the way in which the conditional beta

changes with economic shocks. At the local maximum in the area between x “ ´10 and x “ 0,

13Figure 13 plots the function fpxq for various values of ν along with the distribution of x.
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the conditional beta is effectively constant. However, to the right of this local maximum, a

positive economic shock leads to a decrease in the conditional beta, which implies a further

increase in the stock price, and the opposite is true for a negative economic shock. Therefore,

to the right of the local maximum the stock becomes more risky and the p´ d ratio decreases.

To the right of x “ 0, the p ´ d ratio of the pro-cyclical stock increases again because the

increase in the riskiness of the stock is lower while the equity premium continues to decrease.
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The figure contains various asset pricing quantities against the business cycle variable x. Panel A shows the log

price-to-dividend ratio and Panel B the conditional β for the market (η “ 0), for a pro-cyclical stock (η “ 0.75),

and for a counter-cyclical stock (η “ ´0.75). Panel C shows the equity premium, the conditional volatility of

market returns and the market portfolio Sharpe ratio. In Panel D, the solid lines represents the expected excess

returns of a pro-cyclical and counter-cyclical stock. The dashed lines show the expected excess returns given by

the conditional CAPM model.

Figure 3: Asset price quantities over the business cycle (MC-I)

In Panel B, we see that the conditional betas of the cyclical stocks vary considerably over

the business cycle, where the largest dispersion occurs in normal times around x “ 0. This is
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principally due to the fact that the exposure to the business cycle, which is given by f 1pxq is

highest around the mean. We also observe that the conditional betas are not monotonic, where

the cross-section shrinks significantly both during contractions and during expansions.

In Panel C, we plot the equity premium, the market Sharpe ratio, and the conditional volatil-

ity of the market returns. The equity premium and the Sharpe ratio are largely counter-cyclical,

while the conditional volatility shows only a small (and asynchronous) counter-cyclicality.

In Panel D, we plot the risk premia of the pro-cyclical and counter-cyclical stocks, which

results from the behavior of the conditional betas and the equity premium. From it, we see that

the pro-cyclical stock always demands a higher conditional risk premium; the spread however

shrinks both during expansions and during contractions. Around x “ ´5, we observe the

maximum spread, which is a bit lower than the unconditional mean. If we consider the p ´ d

ratio as a proxy for the market-to-book ratio, then the model predicts a value premium during

normal times and during expansions, and a value discount during contractions. Specifically,

for x higher than around ´3, low p ´ d ratio (high book-to-market) stocks require a higher

expected return, while the opposite is true over the rest of the x domain. This is consistent

with the empirical observation that the value strategy performs well during normal times and

during economic expansions but under-performs during recessions.

In Figure 10 in Appendix A, we plot the same quantities as in Figure 3 with respect to

the risk-free rate. From that figure we learn that the risk-free rate exerts minimal effects on

the conditional betas. Moreover, in Figure 11 in Appendix A, we show the same plots as in

Figure 3 for the model calibration MC-II. For this alternative model calibration, the p ´ d

ratios are mostly decreasing in the business cycle variable because the market Sharpe ratio and

the equity premium are largely pro-cyclical. Otherwise, the conditional betas and the value

premium behave in similar fashions as in model MC-I.

Next, we inspect how the individual state of a stock affects its conditional beta and p ´ d

ratio. We plot these quantities for model MC-I in Figure 4 against the short-run state y and

the long-run state y. When we vary the short-run state, we keep the long-run state at the

unconditional mean, while when we vary the long-run state, we set the short-run state equal to
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This figure shows for model MC-I the log price-to-dividend ratio (p´d) and the conditional β over the individual

state py, yq, for a non-cyclical stock (η “ 0), for various values of ϕ. We set the aggregate state variables px, rf q

at their steady state values. Panels A and B plot these quantities against y where we set y equal to the

unconditional mean, and Panels C and D show the quantities against y where we set y equal to its conditional

expectation.

Figure 4: Stock p´ d and market β in terms of y and y (MC-I)

its conditional mean. We show these plots for a non-cyclical stock, for ϕ “ 0.99, and for three

different values for the persistency of the short-run shocks φ: 0, 0.9, and 0.99. In Panels A and

C, we plot the p ´ d ratio and we observe that its behavior depends little on the persistency

parameter. In contrast, the conditional beta in Panels B and D, are significantly affected by

persistent shocks. Also, we see that the individual state generates a value discount in the sense

that a relatively high p´d ratio (low book-to-market) is associated with a high expected return.

As in Santos and Veronesi (2010), the counter-cyclicality of the equity premium makes longer

duration cash-flows more risky than shorter duration cash-flows. As a result, growth stocks are

more risky than value stocks. In Figure 12 in Appendix A, we see that the model calibration

MC-II generates a value premium due to the downward sloping term-structure of equity premia.

This, however, comes at the cost of a pro-cyclical equity premium and too low stock market

volatility.
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5 Estimating the model for industries

5.1 Data and calibration

Our choice of industry portfolios is governed by several criteria. We need long enough data series

to be able to estimate the model parameters for each portfolio. We need enough homogeneity

within each portfolio so that the estimated model parameters accurately describe the cash-flow

dynamics of its constituents. We also need a large enough cross-section to test the model.

For our purpose, the best candidate is the set of 30 industry portfolios from Kenneth French’s

database.14

The data span the period from July 1926 to the January 2021. The original data is monthly

from which we construct quarterly series to remove the monthly seasonality in the dividends

and the fact that there are many months with zero dividends. We choose ϕ “ 0.99 to match

the levels of autocorrelation in the market capitalization shares as well as to generate enough

idiosyncratic volatility in returns. Regarding the function fpxq, as already mentioned, we choose

the parameter ν to obtain a cross-section of unconditional betas comparable to the data. To

achieve this, we need high sensitivity of cash-flows around the steady state, which implies lower

sensitivity further away from the steady state. A value of ν “ 3.5 allows to capture the range

of unconditional betas across the 30 industries.

For each industry portfolio, we then estimate the dividend share process parameters as

follows: We set yi0 to the average dividend share in the sample. Next, we estimate the other four

parameters pηi, φi, σi, σiq by targeting the following four moments: the unconditional market

beta (β), the autocorrelation in the dividend share (acpθq), the volatility of the dividend share

(σpθq), and the idiosyncratic return volatility (IV ). Essentially, the unconditional beta allows

us to identify the cyclicality parameter ηi. In this regard, Figure 5 shows that the unconditional

beta is a good proxy for the cyclicality of an industry as measured by the correlations of the

changes of dividend and capital shares with the recession indicator. Further, with φi and σi we

target the dividend share moments, and with σi we target the idiosyncratic return volatility.

14Kenneth French data library.
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In the above figure, the x-axis represents the unconditional market betas of the 30 industry portfolios in the

data. On the y-axis, we depict the correlations between the changes in capital shares (∆s) represented by red

circles, and dividend shares (∆θ) represented by blue circles, with the recession indicator (rec). The recession

indicator takes the values of r0, 13 ,
2
3 , 1s. The data covers the period from 1926Q4 to 2020Q4. The straight

lines indicate the linear fits. The correlations between the quantities plotted on the y and x axes are shown in

parentheses in the legend.

Figure 5: Recession shocks vs betas – 30 industry portfolios

In the estimation, we minimize the distance between the data and the model with respect to

the above four statistics. In the model, these statistics are the simulation averages of N “ 100

simulations of 400 quarters each, with a burn-in of 100 quarters.15 The distance between

the model and the data is given by the square root of the sum of the squared t´statistics.

Specifically, the following formula shows the t´statistic with respect to a moment z:

tpzq –
|µdpzq ´ µmpzq|

a

sepzq2 `N´1σpzq2
, (15)

where µdpzq corresponds to the data moment, µmpzq represents the model simulation mean,

sepzq is the data standard error, and σpzq represents the standard deviation of the moment

across the N simulations. We compute GMM corrected standard errors with Newey and West

(1987) weighting and 16 lags.

The estimation prioritizes achieving a better fit for both the unconditional beta and the

idiosyncratic return volatility, placing more weight on these two statistics. Undoubtedly, the

15The 400 quarters match the length of the data sample.
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unconditional beta holds primary significance. Simultaneously, the idiosyncratic volatility is

essential to capture the variations of the term-structure of dividend shares.
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This figure shows the targeted moments regarding the estimation of the cash-flow model for each of the 30

industry portfolios, the volatility of dividend share (Panel A), the autocorrelation of the dividend share (Panel

B), the static CAPM idiosyncratic return volatility (Panel C), and the unconditional β (Panel D). The y´axis

corresponds to the model estimates and the x´axis to the data moments. The 45o line is shown in blue.

Figure 6: Calibration fitted moments (MC-I) – 30 industry portfolios

In Figure 6, we compare the data estimates against those predicted by model MC-I. Panels

C and D demonstrate a better fit for the idiosyncratic volatilities and unconditional betas,

respectively, in comparison to the other two statistics presented in Panels A and B. This is

confirmed by Panel A of Figure 14 where we show with box plots the t´statistics for the 30

industry portfolios. In addition, Panel B shows the box plots of the model distance (mdpzq) for

each statistic, where the model distance refers to the number of standard deviations that the

data estimate is away from the model mean, that is,

mdpzq –
|µdpzq ´ µmpzq|

σpzq
. (16)

With the exception of the autocorrelation of the dividend shares, the data estimates of the
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remaining statistics are within 2 standard deviations from the model means. The maximum

model distance for σpθq, IV , and β are 1.17, 1.28, and 1.56, respectively. However, the model

fails to generate low enough dividend share autocorrelations because the common autocorre-

lation of the long-run dividend share shocks ϕ is set to 0.99 and given that φ ě 0. Yet, low

persistency shocks to the dividend shares have only small effects on conditional betas.16

Regarding the persistency parameter ϕ of the long-run shocks, Figure 15 shows that the

chosen value generates autocorrelations of capital shares that are largely consistent with the

data. Autocorrelations in the data are high, ranging from around 0.925 to 0.995. The model

predicts for some industries relatively low autocorrelations, yet, md is slightly higher than 2

only for one industry portfolio. This implies that the data is consistent with the model.

Following Menzly, Santos, and Veronesi (2004), we assume that the aggregating variables,

which ensure that the sum of dividend shares equals one, take their long-run values. Table

8 in the Appendix contains statistics of the aggregating variables across simulations. These

show moderate deviations from their long-run values and, more importantly, the aggregating

variables exhibit no correlations with the aggregate state variables and the aggregate shock.

Consequently, the pricing implications derived from the simulations are consistent with the

model.

5.2 Generating model implied conditional β’s

Having estimated the dividend share process for each industry portfolio, we generate predictions

for the conditional betas. There are, however, a number of challenges. First, the conditional

beta is a function of latent variables, the business cycle variable x and the portfolio specific

variables pyi, yiq. Second, the function is non-linear and industry portfolio specific. Relating

conditional betas to observable quantities is our approach to address these challenges.

Regarding the business cycle variable, the stock market p´ d ratio serves as a proxy, given

that it has a monotonic, almost linear, relation with x, as shown by Panel A of Figure 3 for

MC-I and Panel A of Figure 11 for MC-II. Also, the stock market p´d ratio is largely insensitive

16Figures 16 and 17 show the corresponding plots for model MC-II.
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to the other determinant, the risk-free rate, as shown by Panel A of Figure 10. To capture the

industry portfolio specific state pyi, yiq, we use the dividend share θi and the capital share si.

Regarding the functional form, it should strike a balance between flexibility in capturing the

model’s implied dependencies, while avoiding excessive complexity that could hinder parameter

estimation. These considerations guide us to adopt the following functional form:

β̂it,all “ bi0 ` b
i
1 ¨

“

θit ´ µpθ
i
q
‰

` bi2 ¨
“

sit ´ µps
i
q
‰

` bi3 ¨
”

rft ´ µpr
f
q

ı

` bi4 ¨ rp´ dt ´ µpp´ dtqs ` b
i
5 ¨ rp´ dt ´ µpp´ dtqs

2
` bi6 ¨ rp´ dt ´ µpp´ dtqs

3 .

We estimate the parameters using regressions on simulated data and refer to the above as the

full model, since we use both aggregate variables and industry portfolio variables to predict

conditional betas.

However, structural shocks and secular industry trends over the sample period makes the

reliance on the dividend and capital shares difficult when making predictions about the con-

ditional betas. For example, it is questionable to assume that during the early period of the

sample investors could predict either the growth or the decline of certain industries. For exam-

ple, the market capitalization share of the transportation industry has declined from around

18% to around 2%, while the business equipment industry has grown from around 1.5% to close

to 15%. Another example is the consumer goods industry which enjoyed a growth from around

0.6% to more than 10% to then decline again to levels a bit lower than 2%. Despite these secular

trends, we expect the cyclical behavior of the industries to have not altered significantly over

the sample period. Therefore, we also estimate a cyclical model where we predict conditional

betas based on purely aggregate variables, as follows,

β̂it,cyc “ bi0 ` b
i
1 ¨

”

rft ´ µpr
f
q

ı

` bi2 ¨ rp´ dt ´ µpp´ dtqs

` bi3 ¨ rp´ dt ´ µpp´ dtqs
2
` bi4 ¨ rp´ dt ´ µpp´ dtqs

3 .

We next analyze the performance of these models and the importance of the two factors that
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drive the conditional betas according to the model.

5.3 Cyclicality vs term-structure

Before inferring the time-series of the conditional betas of the industry portfolios using β̂all and

β̂cyc, we examine how well they capture the variations in the conditional betas in the model.

Table 5 shows statistics regarding the R2’s from the estimations and variance contributions. For

model MC-I the explanatory power of β̂all ranges from 82.2% to 97.7% across the 30 industry

portfolios with a mean of 90.9%. For model MC-II, the explanatory power ranges from 76.5%

to 97.1% with a mean of 90.1%.

For β̂all, we also compute the contribution of the cyclical component that is determined by

the aggregate state variables p´ d and rf . These contributions are estimated as the covariance

of the corresponding components with the true conditional betas divided by the variance of

the conditional betas. The contribution of the risk-free rate is minimal, which confirms our

earlier observation that the risk-free rate plays a minor role for the conditional betas. Further,

the importance of the cyclical component in β̂all varies considerably across industries. This

is expected since the importance of the cyclical component depends on the cyclicality of a

portfolio. The contribution of the cyclical component for model MC-I varies from 4.3% to

86.1% with a mean of 37.1%. Similarly, for model MC-II, the range is from 3.2% to 88.7% with

a mean of 31.1%.

However, the true contributions of the cyclical component are larger than those implied by

β̂all. This is because the portfolio specific state also depends on the business cycle variable.

Since causality runs only from the business cycle variable to the portfolio specific state, the

true importance is given by the explanatory power of β̂cyc. For MC-I (MC-II), the explanatory

power ranges from 20.5% (13.8%) to 95.8% (92.3%) where the mean is 50.4% (42.4%). Yet,

these estimates still slightly underestimate the true importance of the cyclical component, since

β̂ is only an approximation and does not account for all fluctuations. Nevertheless, on average

cyclicality is at least as important for the fluctuations of the conditional beta as the term-
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Table 5: R2’s and variance decomposition

Avg. St.dev. Min q25 q50 q75 Max

MC-I: β̂all 90.9 4.2 82.2 89.2 91.9 94.1 97.7
rf , p´ d 37.1 22.8 4.3 13.5 35.5 57.0 86.1
rf -0.7 0.6 -2.2 -1.2 -0.6 -0.2 0.0

MC-I: β̂cyc 50.4 22.9 20.5 28.1 48.4 73.2 95.8

MC-II: β̂all 90.1 5.4 76.5 87.3 90.8 94.8 97.1
rf , p´ d 31.1 28.3 3.2 11.8 17.5 46.1 88.7
rf -1.3 1.5 -4.3 -2.0 -0.6 -0.3 0.1

MC-II: β̂cyc 42.4 24.5 13.8 23.5 36.8 52.8 92.3

This table presents the explanatory power, in percentages, of β̂all
and β̂cyc, along with individual components, in explaining the vari-
ation in the true conditional betas for the estimated cash-flow mod-
els of the 30 industry portfolios. Each line reports the average
(Avg.), standard deviation (St.dev.), minimum (Min), maximum
(Max), and the 25%, 50%, and 75% quantiles across these port-
folios. The values presented are the averages obtained from 100
simulations. The components “rf , p ´ d” and “rf” correspond to

the collection of terms of the full model β̂all with their respective
quantities. For β̂all and β̂cyc we report the regression R2’s. For
the components we report the covariances of those components
with the true conditional β’s divided by the variances of the true
conditional β’s.

structure, while in some cases cyclicality accounts for almost all fluctuations.

6 Asset pricing tests

With the models β̂all and β̂cyc for each industry portfolio and for each of the calibrated models

MC-I and MC-II, we can infer time-series of model implied conditional betas and test whether

the conditional CAPM model explains returns.

We use standard time-series asset pricing test statistics. Suppose tβ̂it , t “ 1, . . . , T u is the

estimated time-series of conditional betas of portfolio i. We compute the abnormal return every

period,

αit “ Ri
t`1 ´R

f
t ´ β̂

i
¨ pRm

t`1 ´R
f
t q
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and then the average abnormal return (alpha) and the return residuals, via,

αi “
1

T

T
ÿ

t“1

αit, εit “ αit ´ αi.

Under the null hypothesis the alpha is zero for all portfolios. The first test statistic we compute

is the mean absolute alpha for the set of N test portfolios, i.e.,

µp|α|q “
1

N

N
ÿ

i“1

|αi|. (17)

For each portfolio, we perform a standard t´test to examine the significance of the estimated

alpha, using GMM corrected standard errors with Newey and West (1987) weighting matrix.

We then count the number of test portfolios for which the average abnormal return is significant

at the 5% level,

#p ă 5% “

N
ÿ

i“1

1

„

Ft

ˆ

|αi|

sepαiq
, T ´ 1

˙

ą 0.975



, (18)

where Ftpτ, kq denotes the cumulative distribution function of the t´distribution with k degrees

of freedom, sepαiq is the GMM corrected standard error estimate of the alpha, and 1p¨q denotes

the indicator function.

Apart from the above two informal tests, we also perform the Gibbons, Ross, and Shanken

(1989) (GRS) test and the more general and slightly stricter Wald test to examine whether

the alphas are jointly zero. However, these tests are done with constant loadings. Let ft ”

pf1,t, . . . , fK,T q
1 denote the vector of K asset pricing factors with mean sample estimate denoted

by f and covariance matrix sample estimate denoted by Ω. Also let α ” pα1, . . . , αNq
1 denote

the vector of alpha sample estimates and Σ the sample estimate of the covariance matrix of

the return residuals. Then under the assumption of i.i.d. residuals that follow the Gaussian
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distribution, the statistic,

JGRS –
T ¨ pT ´N ´Kq

N ¨ pT ´K ´ 1q

´

1` f
1
Ω´1f

¯´1

α1Σ´1α „ FN,T´N´K (19)

follows the F -distribution with degrees of freedom N and T ´N ´K under the null hypothesis

that the alphas are zero. The above statistic gives us the GRS finite sample test. Relaxing the

assumption of Normality, the statistic,

JWald – T
´

1` f
1
Ω´1f

¯´1

α1Σ´1α „ χ2
N (20)

follows asymptotically the χ2 distribution with N degrees of freedom under the null.17

To transform the GRS and the Wald tests into tests with time-varying loadings, we assume

that the conditional betas are observed without error. The term f
1
Ω´1f in the expressions of

JGRS and JWald account for the fact that the factor loadings are estimated with error. Removing

this term, we obtain the following statistics,

J˚GRS –
T ´N

N
α1Σ´1α „ FN,T´N (21)

and

J˚Wald – Tα1Σ´1α „ χ2
N (22)

to use in order to test the models where the betas vary over time. These are simply tests of

whether the means of a set of variables jointly equal zero. We further note that J˚GRS and J˚Wald

are stricter tests compared to JGRS and JWald, respectively.

17For more details about the GRS and the Wald tests, see chapter 12 in Cochrane (2005).
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6.1 The 30 industry portfolios

For each portfolio, both MC-I and MC-II models provide two sets of conditional betas: β̂all and

β̂cyc. Table 6 presents the results of asset pricing tests conducted on various models and over

different sample periods. Section A of the table presents the outcomes of testing the conditional

CAPM model from 1932Q1 to 2020Q4, using six different estimates of the conditional betas.

Apart from the four estimates generated by our models, we also evaluate the constant betas, as

provided by the sample unconditional estimates βunc, and the 5-year running window estimates

βrw. The results for the entire sample, spanning from 1927Q1 to 2020Q4, are presented in

section B. We utilize the statistical measures J˚GRS and J˚Wald, that we refer to as GRS˚ and

Wald˚ tests, respectively, to derive these results.

The table presents our primary finding that the conditional CAPM model using beta esti-

mates from the MC-I model effectively explains the returns of the 30 industry portfolios based

on the GRS˚ and Wald˚ tests. For the period from 1932Q1-2020Q4 (1927Q1-2020Q4) we find

that the p´values for the GRS˚ and Wald˚ tests using MC-I:β̂all are 11.7% (6.56%) and 5.0%

(2.45%), respectively. These results indicate that, with the exception of the Wald test during

the period 1927Q1-2020Q4, the null hypothesis cannot be rejected at the 5% confidence level.

Additionally, none of the alpha estimates in either of the samples are statistically significant at

the 5% confidence level.

The results are even more robust for MC-I:β̂cyc, as both tests fail to reject the null hypothesis

at the 10% confidence level for either of the two sample periods. Specifically, the p-values for the

GRS˚ and Wald˚ tests over the period 1932Q1-2020Q4 (1927Q1-2020Q4) are 28.7% (19.1%)

and 17.0% (10.1%), respectively. These findings are consistent with our expectation, as we

had previously noted that the capital and dividend shares, when compared to their respective

sample means, may not accurately reflect the term-structure of dividend shares throughout the

entire sample period.

The conditional CAPM with the MC-I:β̂cyc beta estimates demonstrates superior perfor-

mance also with respect to the mean absolute alpha metric, µp|α|q. In this case, the mean
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Table 6: Time-series AP tests – 30 industry portfolios

A. 1932Q1–2020Q4

MC-I MC-II

βunc βrw β̂all β̂cyc β̂all β̂cyc

µp|α|q (%) 0.454 0.399 0.339 0.317 0.714 0.666
GRS˚ p-val (%) 0.004 0.019 11.730 28.743 4.751 1.528
Wald˚ p-val (%) 0.012 0.289 5.031 16.950 1.489 0.323
#p ă 5% 5 2 0 0 0 2

B. 1927Q1–2020Q4

MC-I MC-II

βunc β̂all β̂cyc β̂all β̂cyc

µp|α|q (%) 0.462 0.373 0.341 0.615 0.599
GRS˚ p-val (%) 0.085 6.563 19.112 4.738 0.854
Wald˚ p-val (%) 0.007 2.447 10.129 1.589 0.163
#p ă 5% 4 0 0 1 2

C. 1927Q1–2020Q4 D. 1932Q1–2020Q4

CAPM FF3 FF3M CAPM FF3 FF3M

µp|α|q (%) 0.462 0.552 0.505 0.454 0.538 0.481
GRS p-val (%) 0.152 0.000 0.000 0.266 0.000 0.000
Wald p-val (%) 0.017 0.000 0.000 0.032 0.000 0.000
#p ă 5% 4 10 10 4 9 10

E. 1927M1–2021M1 F. 1963M7–2021M1

CAPM FF3 FF3M CAPM FF3 FF3M FF5

µp|α|q (%) 0.142 0.176 0.157 0.128 0.183 0.169 0.222
GRS p-val (%) 1.138 0.000 0.000 14.114 0.032 0.019 0.001
Wald p-val (%) 0.722 0.000 0.000 9.845 0.008 0.004 0.000
#p ă 5% 5 7 9 2 5 8 11

The table presents the results of asset pricing tests for various models and periods,
using the 30 industry portfolios as test assets. Panels A and B examine the conditional
CAPM model with different estimates of conditional betas: βunc represents constant
betas equal to sample estimates, βrw denotes betas estimated using 5´year running
windows, while β̂all and β̂cyc refer to model-implied betas. Panels C to F test static
factor models: static CAPM, the Fama and French (1993) three-factor model (FF3),
the FF3 model together with the Carhart (1997) momentum factor (FF3M), and the
Fama and French (2015) five-factor model (FF5). The tests are defined by equations
(17) through (22): µp|α|q represents the mean absolute α, where a portfolio’s α is
the mean unexplained return. GRS (GRS˚) and Wald (Wald˚) refer to the F and
χ2 specification tests for the static factor (conditional CAPM) models. The table
reports the p´values. #p ă 5% indicates the number of portfolios with statistically
significant α’s at the 5% confidence level. All numbers are in percentages, except for
#p ă 5%. The title of each panel indicates the sample period and frequency, with Q
(M) representing quarterly (monthly) data.

absolute alpha is 0.319% per quarter, as opposed to the 0.454% observed with constant betas.

In contrast, the conditional CAPM model employing the beta estimates obtained from the
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MC-II model performs poorly in this regard, despite improving performance in the GRS˚ and

Wald˚ tests when compared to the constant beta and running window beta estimates.

When comparing the performance of the conditional CAPM model between MC-I and MC-

II, several observations can be made. Firstly, the performance of MC-II is notably worse than

that of MC-I, particularly with respect to the cyclical component of the conditional betas. This

suggests that the counter-cyclical behavior of the stock market p´ d ratio and its relationship

with the conditional betas is not consistent with the observed data. However, unlike MC-I, the

term-structure component in MC-II does result in a slight improvement in performance. This

could potentially indicate a downward sloping term-structure of equity premia, although it is

difficult to draw any firm conclusions.

Notably, the conditional CAPM with the running window betas outperforms the uncondi-

tional CAPM (βunc) across all the metrics considered, implying that betas are time-varying.

However, these betas fail to capture the fluctuations implied by our model, particularly those

related to the business cycle.

The empirical asset pricing literature emphasizes the importance of including multiple pric-

ing factors to account for the cross-sectional variation in expected returns, as evidenced by

studies such as Fama and French (2015) and Hou, Xue, and Zhang (2015). Hence, it is neces-

sary to evaluate the performance of such models in explaining the returns of the 30 industry

portfolios and compare them with the conditional CAPM model using our model’s beta esti-

mates. In our analysis, we consider several models, including the static CAPM, the Fama and

French (1993) three-factor model (FF3), the FF3 model combined with Carhart (1997) momen-

tum factor (FF3M), and the Fama and French (2015) five-factor model (FF5).18 It is worth

noting that data for the FF5 model is available only from July 1963. We conduct tests using

both quarterly and monthly data for these models, and the results are presented in sections C

18The static CAPM model is the same as the conditional CAPM model when the betas are constant (βunc).
Hence, the performance of both models is identical with regard the mean absolute alpha and the number of
significant alphas, as observed in sections B and C. However, the difference lies in the tests used to evaluate
their performances. The βunc model is tested using the more stringent GRS˚ and Wald˚ tests, whereas the
static CAPM model is tested using the GRS and Wald tests. As a result, the p´values reported for βunc are
slightly higher than those reported for the static CAPM.
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to F of Table 6.

The main observation is that none of the models in Panels C to F can account for the 30

industry portfolio returns, and surprisingly, the static CAPM model performs the best across all

metrics. Regardless of the sample period or data frequency, the static CAPM consistently yields

the lowest mean absolute alpha, the highest p´values, and the fewest statistically significant

alphas. Moreover, during the sample period of 1963M7-2021M1, the static CAPM model is

not rejected by either the GRS or Wald test, with p´values of 14.1% and 9.8%, respectively.

Yet, the performance of the static CAPM model is slightly inferior compared to the conditional

CAPM model with running window betas, and it is statistically rejected in most samples and

data frequencies. Among all the models we consider, the conditional CAPM model with beta

estimates provided by the MC-I model exhibits the best performance and it is not statistically

rejected, which is mainly due to the cyclical behavior it predicts.

6.2 The Fama-French 25 size and book-to-market portfolios

While our model is successful in explaining the 30 industry portfolio returns, we acknowledge

that it may not be sufficient to explain CAPM “anomalous” returns of managed portfolios,

such as those based on size or the book-to-market ratio. There are several reasons for this

limitation. Firstly, our model’s ability to explain returns relies on its ability to identify the

cyclicality of a portfolio. While this may be relatively constant and easily identifiable for the

30 industry portfolios, it is probably not the case for managed portfolios. Secondly, managed

portfolio returns may be influenced by the term-structure of their cash-flows, which our model

seems unable to capture. This could be due to the difficulty in identifying the true conditional

cash-flow term-structure, or because the term-structure of equity returns is downward-sloping,

while our model MC-I predicts instead an upward-sloping term-structure.

We examine this conjecture with the 25 Fama-French size and book-to-market portfolios.

However, in order to apply our model and infer conditional betas, we have to make the strong

assumption that the cash-flow parameters pyi, ηi, φi, σi, σiq of each portfolio are constant over
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time. Applying the same procedure as for the 30 industry portfolios yields four sets of condi-

tional betas, with two sets for each of the MC-I and MC-II models. We then perform the same

tests and over the same sample periods as for the 30 industry portfolios. We present the results

in Table 7.

As expected, none of the MC-I and MC-II models is able to explain the average returns of

these portfolios whether over the full sample (section A) or the sample from 1932Q1-2020Q4

(section B). All p´values are effectively zero, the mean absolute alphas and the number of

statistically significant alphas are higher than those produced by either the static CAPM or

the conditional CAPM with running window betas.

However, from sections C to F of Table 7, we find that none of the other models we consider

are able to explain the average returns of these portfolios either. All p´values are zero, and

the multifactor models do not demonstrate any meaningful improvement in the mean absolute

alpha when compared to the static CAPM model. Furthermore, these models score lower in

terms of the number of statistically significant alphas. This observation is particularly evident

in the quarterly data, as can be seen from sections C and D. While the multifactor models

appear to offer an improvement in the mean absolute alpha in the post-war monthly sample

from 1963M7 to 2021M1, all models are still strongly statistically rejected in this sample as

well.

6.3 The mechanism and supporting evidence

The model MC-I is able to explain the average returns of the 30 industry portfolio through a key

mechanism: the cross-section shrinks during recessions when the equity premium increases. As

a result, the relationship between average returns and unconditional betas is flatter than what

the static CAPM predicts, as illustrated in Figure 1. Too see why, consider the decomposition

of the average return of a portfolio that we expressed in Section 2,

EpRi
t`1 ´R

f
t q “ βiunc ¨ Epλ

m
t q `

“

Epβitq ´ β
i
unc

‰

¨ Epλmt q ` Covpβ
i
t , λ

m
t q (23)
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Table 7: Time-series AP tests: 25 Fama-French portfolios

A. 1932Q1–2020Q4

MC-I MC-II

βunc βrw β̂all β̂cyc β̂all β̂cyc

µp|α|q (%) 0.433 0.636 0.698 0.726 1.901 1.682
GRS˚ p-val (%) 0.000 0.000 0.000 0.000 0.000 0.000
Wald˚ p-val (%) 0.000 0.000 0.000 0.000 0.000 0.000
#p ă 5% 1 3 4 4 4 4

B. 1927Q1–2020Q4

MC-I MC-II

βunc β̂all β̂cyc β̂all β̂cyc

µp|α|q (%) 0.427 0.671 0.683 1.623 1.486
GRS˚ p-val (%) 0.000 0.000 0.000 0.051 0.000
Wald˚ p-val (%) 0.000 0.000 0.000 0.006 0.000
#p ă 5% 1 4 4 4 4

C. 1927Q1–2020Q4 D. 1932Q1–2020Q4

CAPM FF3 FF3M CAPM FF3 FF3M

µp|α|q (%) 0.427 0.405 0.440 0.433 0.410 0.441
GRS p-val (%) 0.000 0.000 0.000 0.000 0.000 0.000
Wald p-val (%) 0.000 0.000 0.000 0.000 0.000 0.000
#p ă 5% 1 11 8 1 9 8

E. 1927M1–2021M1 F. 1963M7–2021M1

CAPM FF3 FF3M CAPM FF3 FF3M FF5

µp|α|q (%) 0.159 0.116 0.100 0.202 0.092 0.083 0.083
GRS p-val (%) 0.000 0.000 0.001 0.000 0.000 0.000 0.001
Wald p-val (%) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
#p ă 5% 3 9 7 5 6 6 4

The table presents the results of asset pricing tests for various models and periods,
using the 25 Fama-French size and book-to-market portfolios as test assets. Panels A
and B examine the conditional CAPM model with different estimates of conditional
betas: βunc represents constant betas equal to sample estimates, βrw denotes betas
estimated using 5´year running windows, while β̂all and β̂cyc refer to model-implied
betas. Panels C to F test static factor models: static CAPM, the Fama and French
(1993) three-factor model (FF3), the FF3 model together with the Carhart (1997)
momentum factor (FF3M), and the Fama and French (2015) five-factor model (FF5).
The tests are defined by equations (17) through (22): µp|α|q represents the mean
absolute α, where a portfolio’s α is the mean unexplained return. GRS (GRS˚)
and Wald (Wald˚) refer to the F and χ2 specification tests for the static factor
(conditional CAPM) models. The table reports the p´values. #p ă 5% indicates
the number of portfolios with statistically significant α’s at the 5% confidence level.
All numbers are in percentages, except for #p ă 5%. The title of each panel indicates
the sample period and frequency, with Q (M) representing quarterly (monthly) data.

where λmt “ EtpR
m
t`1 ´R

f
t q denotes the conditional equity premium. Figure 2 plots the second

and third terms of the above expression for the conditional betas MC-I:β̂cyc of the 30 industry
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portfolios. The figure reveals that each term contributes about equally to explaining the aver-

age returns. During recessions, when the equity premium increases, the betas of pro-cyclical

(counter-cyclical) stocks decrease (increase), leading to a negative (positive) value for the third

term. The reason why the second term is also negative (positive) for pro-cyclical (counter-

cyclical) stocks in our sample is related to the same reason. As a result of the specific pattern

of recessions that we have observed, the sharp decline (increase) in the conditional beta of

pro-cyclical (counter-cyclical) stocks during those episodes has resulted in average conditional

betas that are lower (higher) than their unconditional estimates.

To examine further the behavior of the model in regards to the industry portfolio per-

formances during recessions, we plot the average excess returns during recessions against the

unconditional betas of the portfolios in Figure 7. We determine recessions in the model when

the business cycle variable x falls below a certain threshold. In the data, about 17% of the time

the economy is in recession, according to the NBER recession data. Therefore, recessions are

considered to be those states for which x is below the 17%-percentile. We simulate 100 histories

of 100 years each and compute the average excess returns for each portfolio during recessions

for each history and then across all simulated histories. These are shown with the circles in the

figure and the yellow line shows the linear fit with a linear correlation coefficient of ´0.97. The

red line shows the average excess returns predicted by the static CAPM. We notice that the red

line is flatter than the yellow line and the two lines cross. Consequently, the counter-cyclical

(pro-cyclical) portfolios, as indicated by their unconditional betas, perform on average better

(worse) compared to their static CAPM predictions, according to the model.

We generate the same plot with the data in Figure 8. We observe that, similar to the

model behavior depicted in Figure 7, the linear relationship between average excess returns

during recessions and unconditional betas (represented by the yellow line) is flatter than what

the static CAPM predicts (represented by the red line). However, we also observe that the

two lines do not intersect. The yellow line lies above the red line, because the counter-cyclical

portfolios outperformed the expectations set by the static CAPM, whereas the pro-cyclical

portfolios performed more or less as expected. Furthermore, the linear correlation coefficient
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The figure plots with blue circles the average excess returns during recessions against the unconditional betas

for the 30 industry portfolios predicted by the model MC-I. The data are obtained from 100 simulations of 400

quarters each, with a burn-in of 100 quarters. The yellow line is the linear fit to the simulated data, where the

parenthesis in the legend reports the linear correlation coefficient. The red line represents the relation predicted

by the static CAPM model.

Figure 7: Excess returns during recessions – model MC-I average.

between average excess returns and unconditional betas is calculated to be ´0.73.

However, it’s important to note that in the data, we only observe a single history, whereas in

the model, we present the average across 100 simulated histories. When comparing the average

excess return of the market (represented by the red line at the point where the unconditional

beta is one), we find that it was approximately ´4.5%, significantly lower than the model’s

prediction of around ´1.4% across simulations. This implies that, according to the model,

the recessions we have observed are more severe compared to their unconditional expectations.

Consequently, this finding helps explain the previous observation concerning the second term

in expression (23), where the average conditional betas of pro-cyclical (counter-cyclical) stocks

were lower (higher) in the observed history than their unconditional estimates.

To enable a more appropriate comparison between the model and the data, we select the

simulated history from the set of 100 paths that exhibits the closest average market excess

return during recessions to that observed in the data. We then generate the same plot for this

selected path, as shown in Figure 9. We observe a remarkably similar behavior to that seen
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The figure plots with blue circles the average excess returns during recessions against the unconditional betas

for the 30 industry portfolios in the data. The data is quarterly and the sample period is 1926Q4–2020Q4.

The yellow line is the linear fit to the data, where the parenthesis in the legend reports the linear correlation

coefficient. The red line represents the relation predicted by the static CAPM model.

Figure 8: Recessions - data.

in the data: the yellow line consistently lies above the red line, the slope of the yellow line

closely matches the data, and the linear correlation between the average excess returns during

recessions and unconditional betas is calculated to be ´0.80, which is in close proximity to the

data correlation of ´0.73.19

Therefore, the resemblance between the data and the model supports the mechanism by

which the model explains the returns of the 30 industry portfolios over the past century or so.

Specifically, it suggests that, firstly, the cross-section of these portfolios in terms of conditional

betas contracts during recessions. Secondly, the average conditional betas over the observed

history deviate from their unconditional estimates in a manner that causes the relationship

between average excess returns and the unconditional estimates to be flatter than what the

static CAPM model predicts.

19In Figure 9, we observe that the yellow line intersects the vertical line at an unconditional β of 0.8 (1.5) at
approximately ´2.9% (´6.5%), mirroring the behavior observed in the data depicted in Figure 8.
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The figure plots with blue circles the average excess returns during recessions against the unconditional betas

for the 30 industry portfolios obtained by one simulation path of the model MC-I. The path is chosen out of

100 simulations of 400 quarters each, with a burn-in of 100 quarters, that exhibits the closest average market

excess return during recessions to that observed in the data. The yellow line is the linear fit to the simulated

data, where the parenthesis in the legend reports the linear correlation coefficient. The red line represents the

relation predicted by the static CAPM model.

Figure 9: Recessions - model 1 path.

7 Conclusions

In light of the shortcomings of the traditional static CAPM model in explaining average returns,

extensive research has delved into assessing its conditional validity through diverse method-

ologies. In our study, we introduce a dynamic model with flexible cash-flow and stochastic

discount rate dynamics, enabling the inference of asset or portfolio conditional betas. Applying

this model to 30 industry portfolios, we find that the conditional CAPM effectively accounts

for the cross-section of their average returns spanning approximately a century; an achieve-

ment that eludes several established factor models. A key determinant of our success lies in

the covariance patterns between conditional betas and the market risk premium, alongside the

distinctive impact of historical recessionary periods on observed returns.

Our model hinges on two drivers influencing the conditional beta of an asset. First, the

cyclicality of the asset, reflecting variations in its dividend share across economic cycles, yields

substantial nonlinear dynamics in conditional betas. Second, the term-structure of expected
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dividend share growth in a given period, also contributes significantly to conditional beta vari-

ations. Notably, our analysis of the 30 industry portfolios indicates that, on average, both

components hold equal importance in generating conditional beta variations.

A notable challenge in implementing our approach arises from the necessity of observing a

lengthy history of dividend shares characterized by stationary dynamics. This poses a specific

issue for the industry portfolios in relation to the term-structure component. Despite this,

the cyclicality component alone proves sufficient to explain the cross-section of average returns.

However, for managed portfolios such as value or size strategies, this challenge becomes notably

more formidable. Nevertheless, our findings strongly suggest that more effort to accurately map

the true conditional market betas of assets and portfolios is well-justified.
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A Further tables and figures
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The graph plots various asset pricing quantities against the state of the risk-free interest rate rf . Panel A plots

the log price-to-dividend ratio and Panel B the conditional β for the market (η “ 0), for a pro-cyclical stock

(η “ 0.75), and for a counter-cyclical stock (η “ ´0.75). Panel C plots the equity premium, the conditional

volatility of market returns and the market portfolio Sharpe ratio. In Panel D, the straight lines show the

expected excess returns of a pro-cyclical and counter-cyclical stock. The dashed lines show the expected excess

returns given by the conditional CAPM model.

Figure 10: Asset price quantities against the interest rate (MC-I)
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The graph plots various asset pricing quantities against the business cycle variable x. Panel A plots the log

price-to-dividend ratio and Panel B the conditional β for the market (η “ 0), for a pro-cyclical stock (η “ 0.75),

and for a counter-cyclical stock (η “ ´0.75). Panel C plots the equity premium, the conditional volatility of

market returns and the market portfolio Sharpe ratio. In Panel D, the straight lines show the expected excess

returns of a pro-cyclical and counter-cyclical stock. The dashed lines show the expected excess returns given by

the conditional CAPM model.

Figure 11: Asset price quantities over the business cycle (MC-II)
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This figure shows for model MC-II the log price-to-dividend ratio (p´d) and the conditional β over the individual

state py, yq, for a non-cyclical stock (η “ 0), for various values of ϕ. We set the aggregate state variables px, rf q

at their steady state values. Panels A and B plot these quantities against y where we set y equal to the

unconditional mean, and Panels C and D show the quantities against y where we set y equal to its conditional

expectation.

Figure 12: Stock p´ d and market β in terms of y and y

The figure plots the fpxq function, as defined by fpxq “ Φpx; 0, ν2q ´ 1, for various values of ν.

Figure 13: The function fpxq
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This figure displays box plots illustrating various statistics for the 30 industry portfolios. Panel A shows the t-

statistics of the quantities employed in estimating the cash-flow model in model MC-I: σpθq and acpθq represent

the volatility and autocorrelation of the dividend share, respectively. IV denotes the idiosyncratic return

volatility, and β signifies the unconditional sample β. The t-statistics are estimated using the sample estimate

standard errors and the standard deviations across 100 model simulations. In Panel B, the figure presents the

model distance for each of these quantities. The model distance is calculated as the difference between the data

estimate and the average of the model simulations, divided by the standard deviation across simulations.

Figure 14: Calibration metrics (MC-I) – 30 industry portfolios.
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This figure relates the autocorrelations of the capital shares of the 30 industry portfolios implied by the estimated

cash-flow model in model MC-I with the data estimates. Panel A plots model-implied values against the data

estimates. Panel B shows box plots of the t´statistic and the model distance. The t-statistics are estimated

using the sample estimate standard errors and the standard deviations across 100 model simulations. In Panel

B, the figure presents the model distance for each of these quantities. The model distance is calculated as

the difference between the data estimate and the average of the model simulations, divided by the standard

deviation across simulations.

Figure 15: Serial correlation of capital shares (MC-I) – 30 industry portfolios.
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This figure shows the targeted moments regarding the estimation of the cash-flow model for each of the 30

industry portfolios, the volatility of dividend share (Panel A), the autocorrelation of the dividend share (Panel

B), the static CAPM idiosyncratic return volatility (Panel C), and the unconditional β (Panel D). The y´axis

corresponds to the model estimates and the x´axis to the data moments. The 45o line is shown in blue.

Figure 16: Calibration fitted moments (MC-II) – 30 industry portfolios

This figure displays box plots illustrating various statistics for the 30 industry portfolios. Panel A shows

the t-statistics of the quantities employed in estimating the cash-flow model in model MC-II: σpθq and acpθq

represent the volatility and autocorrelation of the dividend share, respectively. IV denotes the idiosyncratic

return volatility, and β signifies the unconditional sample β. The t-statistics are estimated using the sample

estimate standard errors and the standard deviations across 100 model simulations. In Panel B, the figure

presents the model distance for each of these quantities. The model distance is calculated as the difference

between the data estimate and the average of the model simulations, divided by the standard deviation across

simulations.

Figure 17: Calibration metrics (MC-II) – 30 industry portfolios.
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Table 8: Statistics of aggregating variables

MC-I MC-II MC-I MC-II

µpa1q 0.0166 0.0148 µpa2q 1.0006 1.0017
σpa1q 0.0706 0.0731 σpa2q 0.0185 0.0292
ac1pa1q 0.9646 0.9535 ac1pa2q 0.2750 -0.1325

ρpa1, xq -0.0320 0.0066 ρpa2, xq 0.0053 -0.0011
ρpa1, r

f q 0.0120 0.0054 ρpa2, r
f q 0.0018 -0.0056

µpuq 0.0012 0.0011 µpūq 0.0057 0.0006
σpuq 0.3196 0.3932 σpūq 0.6304 0.3138
ac1puq -0.0051 0.0076 ac1pūq 0.0016 -0.0005
ρpu, εq 0.0024 0.0029 ρpū, εq 0.0000 0.0001

The table shows several statistics of the aggregating variables
from the simulated model economies. For each model we run 100
simulations of 400 quarters each (with a burn-in of 100 quarters)
and the statistics reported are averages across simulations. We
denote the mean with µp¨q, the standard deviation with σp¨q, the
first-lag autocorrelation with ac1p¨q, and the correlation with
ρp¨, ¨q.
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